
Lecture 2 - The first game - Catch the Clown

Written by Carl Gustafsson, heavily based on tutorial by Mark Overmars

Goal of the lecture

After finishing the exercises in this lecture, the reader should know how to create a simple, mouse-
controlled game in Game Maker. The concept of a Game Design Document should be clear, and the main
parts of most games understood.

This lecture was revised for round 2 of the Game Maker programming course at www.gameuniv.net.
Changes to the original document are shown with slightly greenish background. If you read this document
for the first time, just ignore those markings and read it as if nothing was marked.

This lecture was also revised for round 3 of the Game Maker programming course at www.gameuniv.net.
Changes to the previous revision of the document are shown with slightly blueish background. People
reading this document for the first time could ignore the different background colors. Most screenshots are
revised, but the change is very little, so they are not marked.

Introduction

Welcome back! This is the second lecture in the Game Maker course on www.gameuniv.net.

This lecture is based upon a tutorial written by Mark Overmars. The original tutorial can be found on Game
Maker's official web page, www.gamemaker.nl. In this lecture we will learn how to place instances in a room
and make the instances interact with each other. We will also see how to implement a mouse-controlled
interface. Even though that may sound complex, it is really very simple. It is just a matter of "getting the
hang of it".

There are some external files required to follow this lecture. They can be found here. Unzip the file to find
the resources for this lecture.

Game idea

It is important, before starting to code anything, to know as much as possible about what the idea of the
game is. What kind of game is it? What is the goal of the game? How will the goal be reached? What are the
challenges that the player will encounter?

This game will not be anything spectacular, because it is the first game we are going to write. The following
text is the "Game idea" of Catch the Clown:

Catch the Clown
Catch the Clown is a little action game. In this game a clown moves around in a playing field. The goal of the player is to
catch the clown by clicking with the mouse on him. If the player progresses through the game the clown starts moving
faster and it becomes more difficult to catch him. For each catch the score is raised and the goal is to get the highest
possible score. Expected playing time is just a few minutes.

Design document

Now that the game idea is stated, a more detailed "Design document" is needed. This document describes
all the objects that are in the game and how they interact. It also describes how the player controls the
game and the "flow" of the game (start, play, win situation, lose situation, levels, end).

Here is the design document for the Catch the Clown game:

Catch the Clown - design document

Game objects
There will be just two game objects: the clown and the wall. The wall object has a square like image. The wall surrounding
the playing area is made out of these objects. The wall object does nothing. It just sits there to stop the clown from moving
out of the area. The clown object has the image of a clown face. It moves with a fixed speed. Whenever it hits a wall object
it bounces. When the player clicks on the clown by the mouse the score is raised with 10 points. The clown jumps to a
random place and the speed is increased by a small amount.

http://www.gameuniv.net/
file:///D:/Carl/Webpages/Gameuniv.net/lecture02/resources.zip
http://www.gamemaker.nl/
http://www.gameuniv.net/
http://www.gameuniv.net/

Sounds
We will use two sounds in this game. A bounce sound that is used when the clown hits a wall, and a click sound that is
used when the player manages to click with the mouse on the clown.

Controls
The only control the player has is the mouse. Clicking with the left mouse button on the clown will catch it.

Game flow
At the start of the game the score is set to 0. The room with the moving clown is shown. The game immediately begins.
When the player presses the <Esc> key the game ends.

Levels
There is just one level. The difficulty of the game increases because the speed of the clown increases after each
successful catch.

Right. That is a good start. We will, later in this lecture, make it a little bit more advanced, but let us first
put the above design to work.

Sprites and sounds

Sprites
Start up Game Maker, or, if Game Maker is already running, select File -> New from the menu to start
editing a new game.

The first thing we will do is to add some sprites to the game. If you remember the previous lecture, you
know that sprites are basically images or animations with a few extra properties. The images for the sprites
can either be created directly in Game Maker, or loaded from an external image file. In this lecture we will
use images that were bundled with the installation of Game Maker.

If you are looking for good images for your games, try looking at the resources and links at
www.gamemaker.nl, or search the Internet. There are lots of images available. Just make sure you do not
use copyrighted material without permission from the copyright holder.

Add a new sprite to the game (see previous lecture if you have forgotten how). The Sprite Properties
window should appear.

In order to load an image from an external file, click the Load Sprite button:

This brings up an image selection file dialog. Find the place where the files from the resources zip file were
stored. Select the file clown.bmp and open it. Now, give the sprite the name sprClown. Another naming
convention could be to name the sprite spr_clown. Use whichever you like, I will probably stick to the
first one, so, in order to not make this course too hard, try naming all the sprites in the same way I do.
Leave all the other settings of the sprite as they are, it should look like this:

Note that the Transparent checkbox is marked. This means that the rectangle around the clown will be
transparent, showing only the clown. If Transparent were not marked, the clown sprite would be

file:///D:/Carl/Webpages/Gameuniv.net/lecture02/resources.zip
http://www.gamemaker.nl/

surrounded by a very dark color all the time. This would not look nice. Therefore we want transparency to
be enabled for the sprite. Almost all sprites I have used have had transparency enabled.

Now you can click OK to close the Sprite Properties window.

Add another sprite. Name it sprWall. This sprite will represent the walls in the game. Since the same sprite
can be used in matrny places in the room, it is only necessary to add one wall sprite to the game. Click the
Load Sprite button. Select the file wall.bmp that is located in the same folder as the clown image.

Click OK to close the Sprite Properties window.

Now you can find the two new sprites in the Resource Explorer. We will now look at a new feature of the
Resource Explorer. Just as with the common File Explorer in Windows, it is possible to add folders to
the resource tree. These folders are called groups and can be very convenient when you have a large
number of entities in the tree and have a hard time finding what you are looking for.

In order to try this, right-click on the Sprites folder in the Resource
Explorer. Select Add Group. This brings up a dialog asking for a
name for the folder. Enter Environment and click OK. A new group is
added to the Sprites folder in the Resource Explorer. We now want
the sprWall sprite to be put in the new group. In order to do this,
click and drag the sprite sprWall from the Sprites folder and into the
Environment group. Done!

The Resource Explorer should now look
like the image on the left.

The placement of an entity in a group has a
meaning only for the user of Game Maker,
not for Game Maker itself. Entities placed in groups are not handled differently
from any other entities. It is only for the convenience of the game developer.
Trust me, it is a good idea to from the beginning get used to naming all entities
good and placing them in good groups.

It is also possible to place groups within groups to form large hierarchies of
entities. This makes it all easier to find what you are looking for and keep a good
order of your development environment.

However, the feature of placing entities in different groups does not relieve the
developer from coming up with unique names for each entity. It is forbidden to use the same name for two
entities, especially when we start delving into GML (Game Maker Language).

As a little exercise, make a new group in the Sprites folder and place the sprClown sprite in that group.
Groups can be expanded and contracted, just like folders in the common file explorer.

Sounds
It is now time to add the sound effects to the game. This is very straightforward.

Add two new sounds to the game. Name the first sound sndBounce and the second sound sndClick. In the
sound sndBounce, load the sound file bounce.wav, and in the sound sndClick, load the sound file
click.wav. This is all that is needed for the sounds. You can listen to them if you want to, just to check that
they sound as expected, then click the OK button in the two sound windows to accept the changes made
and close them.

Of course it is possible to add groups also to the sound entities, but we will not bother with that here; it
works in the same way as with sprites, and, in fact, as will all types of entities.

It is now time to save the game. Choose a good name, like CatchTheClown or Catch_The_Clown or
something like that.

Objects and actions

Up to now, in this lecture, we have only added sprites and sounds. They, in themselves, do not make a
game. Nothing yet happens in the game, all we have is some resources. Time to change that.

Here comes an object <-> instance explanation, cut-and-pasted from Mark's tutorial:

Before we will do this you will have to understand the basic way in which Game Maker and most other game design
systems operate. As we have indicated before, in a game we have a number of different game objects. During the running
of the game one or more instances of these game objects will be present on the screen or, more general, in the game
world. Note that there can be multiple instances of the same game object. So for example, in our Catch the Clown game
there will be a large number of instances of the wall object, which surround the playing field. There will be just one
instance of a clown object.

Instances of game objects don’t do anything unless you tell them to do something. You do this by indicating how the
instances of the object must react to events that happen. There are many different events that can happen. The first
important event is when the instance is created. This is the Creation Event. Probably some reaction is required here. For
example we must tell instances of the clown object that they should start moving in a particular direction. Other events
happen when two instances collide with each other; a so-called Collision Event. For example, when the instance of the
clown object collides with an instance of the wall object, the clown instance must react and change its direction of motion.
Again, other events happen when the player presses a key on the keyboard or clicks with the mouse on an instance. For
the clown object we will use a Mouse Event to make it react to a press of the mouse on it.

To indicate what must happen in the case of an event, you specify actions. There are many useful actions for you to
choose from. For example, there in an action that sets the instance in motion in a particular direction, there is an action to
change the score, and there is an action to play sounds. So defining a game object consists of a few aspects: we can give
the game object a sprite as an image, we can set some properties, and we can indicate to which events instances of the
object must react and what actions they must perform.

Note that I make a distinction between objects, and instances of those objects. An object defines a particular game
object with its behavior (that is, reaction to events). Of this object there can be one or more instances in the game. These
instances will act according to the behavior. Stated differently, an object is an abstract thing. Like in normal life, we can talk
about a chair as an abstract object that you can sit on, but we can also talk about a particular chair, that is an instance of the
chair object, which actually exists in our home.

Now that we know about objects and instances, it is time to add the first object to this game. There are to
be only two objects in this game (at least initially), of which the wall object will be very simple and not have
any behaviour at all. (Note the difference between no behaviour, which will be how the wall works, and bad
behaviour, which is what lots of kids have, at least in the eyes of elderly people :) :)).

Anyway, add a new object to the game. This will be the wall object, so call it objWall. Since it will not have
any behaviour specified, all we have to do is to give it a sprite that will represent it in the game. So, assign
the sprite sprWall to the objWall object, in the same way as you did in the previous lecture. Only, this
time the sprWall sprite is "hidden" behind the group "Environment" when you look in the selection list. This
is what it will look like:

One more thing we should do is to mark the checkbox Solid. Putting a checkmark in that box makes the
object solid, which means that other objects will not be able to pass straight through it. That is it. We are
done with this first object. Click OK to close the Object Properties window for objWall.

Now, add a new object and call it objClown. Select the sprClown sprite for this object. It does not need to
be solid.

The objClown object needs quite a bit of more work than the wall object. Here we need to define a
behaviour. The clown is supposed to be bouncing back and forth between the walls, and it is supposed to
add to the player's score when it is clicked by the mouse.

The first behaviour we are going to define is that the clown should start moving as soon as it is created. It
should move in a random direction. Start with adding an event to the event list. The event we will add is the
Create event, which occurs as soon as an instance of the object is created. Click the Add button to add an
event, then select the Create event from the event selector that appears. This tells the objClown object
that it is supposed to react in some way when it is created.

Now, make sure that the move tab is selected in the actions panel (to the far right in the Object
Properties window). In this panel, locate the icon for the Start Moving in a Direction action. It looks like

this:

Drag that action into the empty Actions list. This brings up the properties for the action. Here we can
select in which direction the object should start moving. Since we want the object to start moving in any of
the eight directions, select all of them (except the square in the middle, which is used to stop an object).
This makes Game Maker pick one of the directions at random. In the Speed textbox, enter 4. That will be
fine for a starting speed. The form should now look like this:

Click OK to store the changes. We have now defined what an instance of the clown object should do once it
is created.

Now, add a new event and select the Collision event. This brings up a list of objects, for which the collision
event occurs. Select the objWall object there. When the clown collides with the wall, we want it to bounce
away from the wall, so, here we add the action Bounce against objects. It is the last action on the move
tab, and looks like this: . Drag it to the Actions list. Accept the default values in the properties window

for this action.

In addition to bouncing from the wall, a sound should be played; the bouncing sound. So, with the Collision
event with the objWall still selected (), select the tab main1 and drag the Play a

sound action () to the action list. In the properties window for the sound, click the list selector for

sound and select the sound sndBounce from the list that appears. The loop property should be left at
false, since we only want to hear the sound once every time the clown bounces against a wall. Click OK to
store the changes.

Great. We have now told the clown object to bounce against instances of the wall object and make a sound
when bouncing. The Object Properties window for the object objClown should now look like this:

If you make any mistake and need to remove an action from the Actions list, just select that action and
press DELETE on the keyboard, or right-click the action and select Delete from the pop-up menu.

You can edit the properties of an action through double-clicking on it in the Actions list or right-clicking and
selecting Edit Values.

Now for the most tricky behaviour - the actions that should happen if the player manages to click on the
clown in the game.

Add a new event to the event list. Select the mouse events. In the list of mouse events that appear, select
the one called Left pressed. Note that there are more than one kind of event for the left mouse button
here. The Left pressed event occurs once every time the player clicks with the left mouse button on an
instance of this object. Other left mouse button events occur all the time when the mouse button is being
held down, or when the mouse button is released, etc. It is important to find the event that best fits the
purpose it is supposed to have in the game.

The first action that we add to this event is to increase the player's score. Game Maker has a built-in score
feature that can easily be changed and displayed on screen. Select the tab score in the actions panel. There
you will find an action called Set the score. It is the first action and looks like this:

Drag the Set the score action to the actions list. In the window that appears with properties for the Set
the score action, enter 10 as new score. This will however only set the score to 10. What we need is to
add 10 to the existing score value. That is done through marking the checkbox called Relative. Marking a
Relative checkbox in any actions properties window will cause any number there to be added to the existing
value of that number rather than just set to that number. When done, the properties window for the Set
the score action should look like this:

If your window looks like this, click OK to close it.

Now, when the player clicks the clown, a sound also should be played; the click sound (sndClick). Add the
action to play a sound, just like we did in the previous event, but this time choose the sndClick to be
played.

Another thing that should happen when the clown is clicked is that it should jump to a random location on
the screen and continue moving from there. On the move tab there is an action called Jump to a random
position. Looks like this:

Add that action to the actions list. Accept the default settings and click OK when the action properties
window appears. This action will make the clown instantly move ("jump") to a random location on the
screen.

One action remains. We want the clown to change direction and to add a little speed to make it harder to

click on. Drag the action Start moving in a direction ()to the Actions list. Click on all the arrows in

the properties window for this action again to let it move in any of the eight directions. Set the speed to 0.5
and mark the Relative checkbox. This will make the speed increase with 0.5 every time the action is
executed.

The Object Properties window for the objClown object should now look like this:

This behavior will do for the clown for now. Time to make a room for the clown to act in.

The Room

Creating rooms for games often takes time, because this is where the level design is really made. However,
in the Catch the Clown game we only need to add the clown and the surrounding wall.

Add a new room. In the room window that appears, click the settings tab and set the name of the room to
GameRoom. There is only one room so far, but since we will be adding more later on, it is very good to
also give names to rooms. Also change the values for the Snap X and Snap Y. These values are found
along the top of the window. Change both to 32 (they are 16 from the start). This will change the room grid
so that it fits the size of the sprites we have used. Both sprites are 32 x 32 pixels large.

If you have a large enough screen, try resizing the Room Properties window so that you can see the entire
room without needing to scroll. This is not crucial, but it greatly helps in the room design. If you can not do
this, the scrollbars work fine to show all parts of the room.

Now it is time to add some instances to the room. Go to the objects tab. Under the Object to add with
left mouse: label there is a list selector. Click it to bring up a list with all objects that are available in the
game. We will now add the wall that surrounds the playing area. Select the object objWall. Click with the
left mouse button in all squares that are along the edges of the room. This will place an instance of the
objWall object there. When you are done, it should look like this:

Alright, time to add the final object. Use the same object selector to select the objClown object instead.
Place an instance of the clown object in the middle of the room. Ta-daa! Our game is now ready to be
tested.

Saving and testing

SAVE the game! This is very important. There is a possibility that something might happen that makes the
computer freeze or something when you are testing the game. If you then have not saved, your blood
pressure might reach dangerous levels.

Game Maker files are saved with the extension gm6.

Then, press F5 to run the game. First the loading screen will appear, then the first (and only) room appears
with the clown bouncing around in it. Clicking the clown with the mouse makes it jump to a random location
on the screen and change direction. It also adds 10 to the score count, which is displayed in the window
caption (The (usually) blue bar at the top of all standard windows). To end the game, press ESC on the
keyboard.

It is now time to really test the game and see that it works according to the design document, and according
to how we want the game to work. It is also important to have someone else test the game. Since you,
yourself, already know how the game is constructed and is supposed to work. No one is as good at finding
bugs as other people. This is often referred to as beta testing.

Now it is time to tune the game. You should ask yourself for example the following questions:

• Is the initial speed correct?

• Is the increase in speed correct?

• Is the room size correct?

• Did we pick effective sprites and sounds for the game?

If you are not happy, change these aspects in the game and test again. Remember that you should let
someone else also test the game. Because you designed the game it might be easier for you than for other
people.

Now, when you are satisfied with everything (well, almost everything. I don't think game designers are
ever satisfied with everything in their games) you have the possibility to make a stand-alone version of it.
This makes it possible for everyone to play the game, not only those that have access to Game Maker. A
Stand-alone file is created through selecting File -> Create Executable ... in the menu. The stand-alone
file will be a normal exe file.

Finishing touches

There are always things that can be improved in games. This, our very first game, will be improved with the
following things:

• Background music

• A nicer background graphic

• Random clown movement

• Help text

Background music
For background music, it is very common to use the MIDI file format. That is because a piece of music is
usually quite long compared to sound effects, and the WAV file format that is the most common for sound
effects is not effective when it comes to storing long sounds. Especially for music MIDI is a good format.
Another good format is MP3, but that might not be supported on all systems.

Add a new sound entity and call it sndBackground. Load the sound music.mid to this sound entity. Note
how Game Maker automatically sets the Kind "Background Music" for this sound when it discovers that it is a
MIDI sound file. Now we also need something that starts the music. The Create event of the objClown
object would be a good place to start the music. To do that, add a Play a sound action to the Create event
of the objClown object and choose the sndBackground to be the sound that is played by this action. This
time, set the Loop setting to true to make Game Maker loop the music file endlessly.

Background graphic
To add some background graphic to the game, instead of the grey background that is the default, add a new
background entity and load the image background.bmp into it. Name the background bgrBrown. The
Transparent setting for backgrounds is off by default. This is OK. Click OK to close the window.

Open the Room Properties for the first room (double-click on the GameRoom room). Select
the backgrounds tab. Uncheck the property Draw background color. It is only used for the grey
background color, and is not needed after adding the new
background image. Click on the list selector to the right of the
words "<no image>". Select the new background we just added
(bgrBrown). The background should now be a kind of brownish
relief (okay, maybe it is red, then, but I am using an old laptop
and the colors are a bit so-so). Note that the properties Tile Hor.
and Tile Vert. are marked. That means that the background
image is tiled so that it covers the entire background.

Random clown movement
You might have noticed that it is pretty easy to hit the clown, because it is easy to anticipate where it will be
in a little time because it is bouncing according to a "pattern". We will now add a little bit of randomness to
this to make the clown harder to hit. The plan is that after a little time, the clown should change to a
random direction. This can be implemented using the alarms feature of the objects.

The alarm clocks work like timers. They are set to a starting value, and then they start to tick down. When
they reach 0, they trigger an alarm event. The speed at which the alarm clocks tick down is the same as
the room speed, which can be set in the Room Properties window. The default room speed is 30, which
means that the game works at 30 steps (or "ticks" or "frames") per second. So, say that we set an alarm
clock to 50 steps. It would then trigger after a little bit more than 1.5 seconds.

Open up the Object Properties window for the objClown object. Select the event Create. Drag the action
Set an alarm clock () to the action list. It can be found in the main2 tab. In the action properties

window that appears, set number of steps to 50. The in alarm no setting could be left at Alarm 0. There
are eight independent alarm clocks available for each object.

The next thing to do is to add the Alarm 0 event to the
list of events that this object should react to. Click the
Add Event button to add a new event. Select the Alarm
events and, in the list that appears, select Alarm 0. We
can now add actions to the Alarm 0 event.

Add a Start moving in a direction action (you know by
now, the eight red arrows icon) and click down on all the
arrows in the action properties window. Let the Speed
be left at 0 and put a check mark in the checkbox
Relative. This means that the direction is set to one of
the eight directions at random, but the speed is not
changed (actually, 0 is "added" to the speed value,
which means that nothing happens to the speed).

Also, in order to make this happen more than once in the
game, we need to set the alarm clock again. Every time
an alarm triggers, the clock is disabled, so for an event
to occur at even intervals throughout the game, the
alarm clock will have to be re-set every time. Add a new
Set an alarm clock action and set Alarm 0 to 50 steps
again, just like in the Create event.

The clown will now change its direction at random with about 1.5 seconds interval. This makes it harder to
hit with the mouse.

Help text
Game Maker includes a feature to add a text document to the game. The document can be edited in an
internal Rich Text editor, which means that it can be given a look similar to an MS Word document. It is
important to give the player instructions about the game so that he (or she) knows how to play it. It is also
a good idea to show the credits, which means displaying the names of you and everyone who has
contributed to the game in some way (e.g. developers, graphics artists, musicians, level designers, beta
testers, your mom, etc). (Side note: Actually, a friend of mine used to, when he was completely stuck in a
programming problem, show his code to his mom and try to explain how it works. His mom usually does not
understand a single thing, but in the process of explaining, my friend used to realize the problem with the
code and be able to correct it. Quite ingenious, don't you think? :))

To add the help text, also known as Game Information, double-click on the Game Information document
in the Resource Explorer (next to the last node). This brings up the Game Information editor. You can now
add all the information about the game that you figure the player needs. Perhaps something like this:

This help text is displayed anytime the player presses F1 on the keyboard. F1 is the standard help key in
Windows. Of course it is possible to change this to any key you like, but F1 will be fine for now.

Ending words

Congratulations! You have now written your first complete game. We have gone through the process of
implementing a Game Design Document using sprites, sounds and objects. You now know that objects are
usually represented by sprites in the game, and that there can be multiple instances of the same object in a
game (the walls). The interaction between objects is a very important part of any game.

You can now go on to the assignments for this lesson.

Good luck!

Carl

Assignments

Assignment 2 - Add features to Catch The Clown

Due date: Thursday, 2 June 2005, 08:00 AM (29 days 22 hours)
Maximum grade: 100

In this assignment you will add a couple of features to the Catch the Clown game that is
developed in lecture 2. Add the following features, zip the gm6 file and upload it for grading:

- Add an additional clown that has the same behaviour as the first clown (Hint: One object can
have multiple instances...).

- Add a "dark clown" that, when clicked, decreases the score by 20 points. A new sprite image
is needed for this, as well as a new object. Also, don't forget to add information about the "dark
clown" in the Game Information document.

- Make different wall objects for the vertical and horizontal parts of the wall, and make corners
for the walls. This requires adding more sprites. Either make your own images or search the
net. There are great resources at Game Maker's web page (http://www.gamemaker.nl).
Note that it is not important how good they look, just that they look different from the other
objects and kind of "fit in". This is not a drawing skills course.
Do not forget to add collision events with these new wall objects to the clown object(s).

Good luck!

Carl

Read part of the GM manual

Due date: Thursday, 2 June 2005, 08:00 AM (29 days 22
hours)

Read the following sections of the Game Maker 6.0 manual:
(don't submit anything)
- EVENTS
- ACTIONS
- CREATING ROOMS
- DISTRIBUTING YOUR GAME

Carl

http://www.gamemaker.nl/

