
Lecture 6 - More GML

Written by Carl Gustafsson, based on my own Beginner's Guide

Goal of the lecture

The reader should, after this lecture, know about the more advanced parts of the Game Maker Language
(GML).

This lecture was revised for round 2 of the Game Maker programming course at www.gameuniv.net.
Changes to the original document are shown with slightly greenish background. If you read this document
for the first time, just ignore those markings and read it as if nothing was marked.

This lecture was also revised for round 3 of the Game Maker programming course at www.gameuniv.net.
Changes to the previous revision of the document are shown with slightly blueish background. People
reading this document for the first time could ignore the different background colors. Most screenshots are
revised, but the change is very little, so they are not marked.

Introduction

This lecture builds upon the previous lecture. The shoot'em up game is further developed with enemies and
such. So, load up the gmd file that was created during lecture 5.

Again, I would like to repeat that since this build upon a Beginner's Guide I wrote some time ago, we have
already done parts of it. You can look upon those parts as a repetition on previous lectures.

Enemies sighted!

There are very few games that do not include computer-controlled enemies to the player. After all, we must
have someone to fight. In this chapter we will add some enemy craft and learn to use the "random" function
and check collisions.

Enemy aircraft
I have decided that the enemy should consist of enemy aircraft that appear at the top of the screen and fly
across to the bottom of the screen.

We need to do the following:

• Have the craft appear at random time intervals

• The craft should appear at random places along the top screen

• When the craft disappear at the bottom of the screen, they should be destroyed

• Later we will add a collision event between the enemy craft and the objPlayer.

First, we must create an enemy craft sprite and an enemy craft object. I have decided to use the image
Mig41.gif that can be found in the resources folder. It looks like this:

Create a new sprite, call it sprEnemy1 and load this image into it. The craft is however facing upwards, and
we need our enemy craft to face downwards, unless of course we want it to attack in reverse, but I do not
think that would look any good.

In order to rotate the craft, open the sprite and click the Edit sprite button. Click on image 0 to select it,
and choose Transform -> Rotate 180 from the menu. That should rotate the craft to face downwards.
Click OK to close the sprite edit window. Click OK again to close the sprite properties window.

Now we need to make an enemy object. Create a new object and call it objEnemy1. Choose sprEnemy1
as the sprite for the object.

http://www.gameuniv.net/
http://www.gameuniv.net/

We want the enemies to come down at certain intervals and fly across the screen. In order to control the
creation of the enemies, we need a control object. We could use the objPlayer as this object, but I prefer
not to. I would rather have a dedicated enemy control object.

Time to explain the term "control object". The concept of a control object is to have an instance of an object
that is always present in the game. It should not be possible to shoot it down or otherwise destroy it. This
particular control object is used to create instances of other objects, such as swarms of enemies that come
flying down. Instances of control objects are also good at keeping some data in their local variables that
cannot be kept in, for example the instance of the player object, since it is destroyed at times (we will come
to that). A control object is usually (but not necessarily) invisible, so that the user does not know it is there.
It does its dirty job "undercover".

So, the instance of this control object will not be visible when playing the game, but it is good to have it
represented by some sprite anyway, in order to place it and see it in the room. So, we do like this.
Create a new sprite, called sprEnemyController and load into it the image Trigger.gif from the resources
directory. That looks good for a controller, doesn't it :) ?

Create a new object, call it objEnemyController and assign the sprite sprEnemyController to it. Make
sure the checkbox Visible in the object window of objEnemyController is unchecked. That will make the
controller object invisible to the player, but we will be able to see it when designing the game.
Open Room1. Add an instance of the objEnemyController object somewhere in the room. It does not
matter where you place it. Just somewhere you can see it. Also, the player instance (the objPlayer) should
be placed at the bottom of the room in order to give the player time to react before the enemies come. If
you placed the objPlayer somewhere in the middle of the room, like I did, delete it by right-clicking on it,
select the objPlayer instance from the Object selection box and place a new instance of the objPlayer
object in the middle, near the bottom of the screen. There!

Now we should create the script for initializing a new enemy. Create a new script and call it Enemy1Init.
For a starter we only want the enemy craft to travel down across the screen. So, in the new script we write:

vspeed = 10;

That will make whatever instance that calls the script move downward across the screen with a speed of 10
pixels per step.

We also need the enemies to disappear once they move below the screen. Create a new script and call it
EnemyDisappear. Enter this code:

instance_destroy();

That code is a call to the function instance_destroy, which destroys the instance that calls it. See the
section The Game Maker Language (GML) -> Game play -> Instanecs of the Game Maker help file for
more information about this function.

That is all code needed for the enemy so far. We will make it a little more advanced later on.

Now we will add two scripts for the enemy controller object. Create two new scripts and call them
EnemyControllerInit and CreateEnemy1. In the script EnemyControllerInit, write the following:

alarm[0] = 30;

That will set the alarm[0] function of the objEnemyController to trigger after 30 steps. That is about 1
second in "real time" provided that the room speed is 30 steps per second. When the alarm triggers it will
call the other script, called CreateEnemy1. In that script, write:

instance_create(50, 0, objEnemy1);
alarm[0] = 30;

The first line will create a new instance of the object objEnemy1 at the x-coordinate 50 and the y-
coordinate 0. Check the section mentioned above in the Game Maker help file for more information about
this function.

The second line sets the alarm[0] once again to 30 steps (1 second) to make sure another enemy appears
after 1 second.

You might have noticed by now that some of the words that you write in the code editor changes color to
blue or violet. That is because those are either reserved words (built-in functions and constants) or entity
names (sprite names, object names, etc). Very good for verifying that you have spelled that object name
correctly.

Now we should make the objects call these scripts. Open the object objEnemy1. Add the event CREATE.
This event will happen when an instance of the object is created. Add the action Execute a script. In the
window that pops up, select the script Enemy1Init. Click OK to close the action window.

Add the event Outside Room (under Other in the event buttons). Add the action Execute a script to the
event and select the script EnemyDisappear. Click OK to close the action window.

Open the object window for objEnemyController. Add the event CREATE. Add the action Execute a
script and select the script EnemyControllerInit. Close the action window. And, finally, to the event
Alarm 0, add the action Execute a script and select the script CreateEnemy1.

Save the game and run it.

You should see enemy aircraft appearing and flying across the screen, disappearing at the bottom. Note that
the instance of the object objEnemyController is not visible when running the game. If it is, you forgot to
uncheck the checkbox Visible in the object window of objEnemyController.

Randomizing
The appearance of the enemies is quite boring though. We would want them to appear at random positions
along the top of the screen, and at random intervals and random speeds. That would make the game a lot
more interesting, don't you think? That is what the random function is for.

Check out the definition for the function random in the Game Maker help file, section The Game Maker
Language -> Computing things -> Real-valued functions. The random function could be used to make
things happen randomly, for example simulating a die. It returns a random value that is always less than
the specified value. Like this:

random(3);

The above line will return values ranging from 0 to 2.9999999999999999999. If I am correctly informed,
Game Maker works with 20 decimals.

To get rid of the decimals, we could use another Game Maker function, called "floor". This function simply
takes away all decimals, so that, for example:

floor(1.23423) = 1

floor(2.999999999) = 2

If we wanted to simulate a 6-sided die, we would use:

myDie = random(6);

The above line would give values ranging from 0 to 5.9999… Then we use the floor function:

myDie = floor(myDie);

As the argument to the floor() function, we use the variable "myDie" itself. This is perfectly OK. The result
will now be an integer between 0 and 5. Almost there. We could now add 1 to the result.

myDie = myDie + 1;

And finally the result would be values from 1 to 6, all with the same probability.
To save some place in the coding window, we could do all there calculations in one line:

myDie = floor(random(6)) + 1;

The above line might be a bit hard to read, but it carries out all the previous calculations in one statement.

Now we will put the random function to work in three places of our code. Open up the script
CreateEnemy1.

First we want the enemies to appear at random positions along the top of the screen. That means we want
to use random values ranging from 0 to 639, which is the width of our game screen (640 pixels wide). The
statement

random(640);

will produce values from 0 to 639.999999. Adding the "floor" function,

floor(random(640));

will produce values from 0 to 639 with no decimals. That looks good. But what if we later want to change
the room size? No problem. In Game Maker there is a built-in variable that can be used to determine the
size of the room. It is called room_width. So, instead of using 640, we will use room_width. (see help
file, section The Game Maker Language -> Game play -> Rooms.) So, now we can change the first line
of the script to read:

instance_create(floor(random(room_width)), 0, objEnemy1);

Be VERY careful with the parentheses, since Game Maker might crash if they are not all there.

If you want, you can save the game and test it.

We also want the enemies to appear at different time intervals. Say between 0.3 and 2 seconds. 0.3
seconds mean 10 frames, and 2 seconds mean 60 frames. So we want a random number between 10 and
60. Change the second line in the script to:

alarm[0] = floor(random(51)) + 10;

That will result in alarm times from 10 to 60 frames.

Save and run the game again.

Finally, we want the enemies to fly at random speeds. Open the script Enemy1Init and change the code
line to this:

vspeed = random(8) + 2;

This will give speeds from 2 to 9.999999. We do not use "floor" here, since speeds with decimals are OK.
(Actually, positions and times are OK with decimals too, but I wanted to teach the floor function ;))
Test the game. Now you will see that the enemies appear at different places, at different times and at
different speeds. Just what we wanted!

Ouch! That hurt!
So far, the enemies are not dangerous. There is no point in avoiding them. Well, that we will have to
remedy!

If you have created any game before, you have probably used the Collision Detection feature of Game
Maker. It is really great. We will use it now to detect collisions between the player and the enemies.
Create a new script and call it PlayerEnemy1Collision. Open the object window for the objPlayer object

and add the event for collision with the objEnemy1 object. That is the event button with the two red arrows
pointing at each other. Click on the selection box next to it and select objEnemy1. Good.

Here you add an Execute a script action and select the script PlayerEnemy1Collision for the action.
Close the action window and the objPlayer object window.

Now we can concentrate on the script. We want to make it possible to run into a number of enemies before
the player dies. Otherwise the game may be too difficult to play. So, we are going to use something we call
"Energy" to measure how much beating the objPlayer can take before it blows up.

I know there is a built-in health feature in Game Maker, but just for learning it, we make our own health
feature. Let's say the objPlayer starts out having 100 energy units. Then, every time it runs into an enemy
craft it will lose 30 energy units. Fair enough? Then, when it reaches 0 energy units, it will be destroyed.
The enemy craft will be destroyed immediately when hitting the objPlayer.

In the collision event script we will therefore need to decrease the energy of objPlayer. It could be done
like this:

myEnergy -= 30;

We also need to check if the energy is 0. If it is, the instance of objPlayer should be destroyed. Remember
the "if" statement?

if (myEnergy = 0) then
{
 instance_destroy();
}

Here I have deliberately included a bad thing about the if statement. Can you see what is wrong? It is the
test, "=". This statement will only check if the energy is exactly 0. But what about if the energy is first 10,
and then you run into an enemy and lose 30 energy units, and the energy becomes -20? Then this if
statement will not trigger and destroy the instance of objPlayer. So, it is better to use the "<=" test
operator. It means "Less than, or equal to". So, write this instead:

if (myEnergy <= 0) then
{
 instance_destroy();
}

That will destroy the objPlayer if the energy is 0 or less than 0.

We also want the enemy to be destroyed, so add the line

with (other) instance_destroy();

to the BEGINNING of the script.

This introduces the with statement. The with statement is extremely useful. It allows us to do something to
another instance. In this case we want to destroy the instance that we collide with. This is called the other
instance in a collision event. So with the other instance we want it to destroy itself. The code line above
is the same as writing instance_destroy() in the code of the other instance's object.

So, the entire script PlayerEnemy1Collision should now look like:

with (other) instance_destroy();
myEnergy -= 30;
if (myEnergy <= 0) then
{
 instance_destroy();
}

or, said with more human-readable words:

Destroy the other instance.
Decrease the variable myEnergy by 30.
Check if the variable myEnergy is less than or equal to 0.
(Start of block)
 If it is, destroy myself
(End of block)

Now we only need to set a starting energy level. We decided to start at 100 energy units. This should be set
in the CREATE event of the objPlayer. We had better create a script for it, that is what this tutorial is
about after all. So, create a new script and call it PlayerInit.

Enter the following line in the script:

myEnergy = 100;

If we do not initialize the variable myEnergy to anything, an error will appear when the objPlayer hits an
instance of the objEnemy1 object. You could try to run the game (save first!) before setting the CREATE
event of the objPlayer to see what it looks like when you forget to initialize a variable. It could be good to
know, because it is easy to forget it. When you hit another craft it says:

"Unknown variable myEnergy"

So, click Abort and let us set the CREATE event of the objPlayer object. Open the objPlayer object,
select the CREATE event. Here you will see the Execute a piece of code action that we added earlier.
Double-click on it. It should only contain one line of code; the initialization of the gunReady variable. This is
a good thing to move to our new PlayerInit script. So, select the code in the code window and copy it.
Close the code window and delete the action Execute a piece of code from the action sequence. Add an
Execute a script action and select the script PlayerInit. Now, open the script PlayerInit and paste the
code from the action we just deleted. If you have done it right, the script PlayerInit should now contain:

gunReady = true;
myEnergy = 100;

Now, save the game and run it again.

You should notice that the enemy aircraft disappear when you run into them. When you run into the fourth
craft, the instance of objPlayer too disappears. Right! Now there is a point in avoiding the enemies.

Shootout
So far your bullets have done nothing to reduce the oncoming swarm of enemy craft. The point of having a
gun in a game is to be able to do some damage. So we need the bullets fired from the objPlayer instance
to damage the enemy craft.

We will make a script that takes care of the collision between a bullet and an enemy craft. Create a new
script and call it BulletEnemyCollision.

This script should work in almost the same way as the collision script for the objPlayer and objEnemy1.
The energy level of the enemy should be decreased, and a check should be made to see if the energy level
is 0 or less. Let's say that the enemy craft start out with an energy level of 100, they too. Then, when a
bullet hits them, their energy level should be decreased with 50 units, which means that it takes two bullets
to kill an enemy.

Here is the script we will use:

with (other)
{
 // Lower enemy energy
 myEnergy -= 50;
 // Check if enemy energy is 0 or less
 if (myEnergy <= 0)
 {
 // If so, destroy enemy.
 instance_destroy();
 }
}
// Destroy this bullet
instance_destroy();

Now, one could always argue that this script should be in the enemy object instead (since it mostly deals
with the enemy), and you can do what you like in your games. For now, let us do it in this way. :)

The difference between this script and the previous is that here most of the work is done on the enemy
instance, and not on the instance of the object that contains the code (the objBullet object).

To have more than one statement inside a with statement, you could use the curly braces like this, just as
with the if statement. As you can see, it is also possible to "nest" the curly braces. That means, in this
example, that you can have an if statement inside a with statement. When you do like this, you usually use
two TAB characters in the beginning of the deepest nested lines to show that they belong inside the if
statement. Once again, the TAB characters, or, as it is also called, the "indentation", is only important to the
human eye. The computer does not care.

So, this script lowers the enemy's energy with 50 units and checks if the energy level is 0 or less. If so, the
enemy is destroyed.

Finally the script also destroys the bullet. Otherwise it would have continued to move across the screen. I
have also put some comments in this script to show how I usually use comments. They are supposed to
increase the readability of the code and make it easier to understand.

Open the object window for the objBullet object. Find and select the collision event with objEnemy1. Add
an Execute a script action and select the script we just created (BulletEnemyCollision).

Now we only need to give the enemies a starting energy level. We already have an initializing script for the
enemies, so let's use it. Open up the script Enemy1Init and add the line:

myEnergy = 100;

That should set the starting energy for the enemies to 100.

Save the game and try it out. Great! Now it is possible to shoot the enemy craft, but only the slow ones. The
ones moving fast are hard to hit.

Note that the same variable name, myEnergy, is used for both the enemy and the player energy. That is
because normal variables like these are so called "local" variables. Local variables are unique for each
instance in the game. So, each enemy and the player have their own myEnergy variable, totally
independent of all the others' variables.

Pyrotechnics
Explosions! They are what are missing from our game. Fortunately Game Maker comes bundled with a nice
explosion animation. We will create an explosion object from it.

First, we need to create the sprite. This time it will be an animating sprite, meaning it has more than one
image. Create a new sprite and call it sprExplosion. Load into it the image file that is called Explosion.gif.
It should be located in the resources folder. When you have loaded it, you will notice that the sprite window
says the number of subimages is 17. Click on the Edit Sprite button.

You will now see all 17 subimages of the sprite. They are named "image 0" to "image 16". To see them
animated, check the little checkbox in the upper left corner of the Sprite Edit window, the one that is called

Show Preview. You should now see an animating explosion that looks pretty nice.

Close the sprite edit window and the sprite window. Create a new object, called objExplosion. Select the
sprite sprExplosion for the new object. In the ANIMATION END event of the objExplosion object, add
an Execute a piece of code action. The ANIMATION END event can be found in the selection box of the
Other events key:

In the code window that pops up, destroy the instance:

instance_destroy();

That will destroy the explosion instance once it has played through its animation frames.

Now, open the object objEnemy1. In the DESTROY event of objEnemy1, add an Execute a piece of
code event. We use this action instead of the script action because the code we will execute here is so small
that it is completely unnecessary to have a freestanding script for it. When the enemy is destroyed we want
an explosion to show up, so we want to create an explosion instance when the enemy is destroyed. In the
new script window that pops up, write:

instance_create(x, y, objExplosion);

That will create an explosion at the same coordinates as the objEnemy1 instance. Remember, for an
instance, the variables x and y contain the coordinates for that instance.

Save the game and start it. Now there is a beautiful explosion showing up whenever an enemy is shot down.

Better add the explosion to the DESTROY event of the objPlayer too. You should be able to do that on
your own now. I will not tell you how to do ;). Use the same objExplosion object as for the enemy.

Enhancing the game

There are some parts of the game that need enhancement to look good. For example the bullet does not
come out at the middle of the objPlayer, and the enemies sort of "pop up" on the screen instead of flying
into it. Time to fix that.

Centered sprites
We will begin to look at why the bullets do not come out from the middle of the player plane. Open the
sprite sprPlayer.
Here you will find the "Origin" settings. It consists of an x value and a y value. These values determine the
so-called origin of the sprite. Their default values are (0, 0). That means that if we place the sprite at
location (100, 100), in the room, it will look like this:

Then, when a bullet is created at the same location as the plane, it will look like this:

That is because the bullet sprite is much smaller than the plane sprite.

We would rather want the ball to start in the middle front of the plane. What we do is that we "center" the
origins of both sprites. Start with the sprPlayer sprite.

Look at the width and height of the sprite. Note that the width of the sprite is 52, and the height is 78. Now
look at the "origin" values again. Enter 26 as the X origin, and 39 as the Y origin (26 = 52/2 and 39 =
78/2). Do the same thing with the sprBullet sprite, where you should enter 8 as the origin for X, and 8 as
the origin for Y (this is the middle of the sprite). In the latest version of Game Maker there is even a button
that does this for you. Just click the Center button. If you look at the image of the sprite in the right part of
the sprite window, you will see two lines that are crossed through the center of the image. They represent
the "origin" of the sprite.

Now, if the player sprite and the bullet sprite are placed at the same location, for example (100, 100), it will
look like this:

The center of the bullet sprite will coincide with the center of the player sprite. Good. But we would like it to
start more like just in front of the plane. This will be fixed through fiddling a bit with the instance_create
function, but first, save and run the game to see the difference.

Notice that the bullets now appear at the center of the player plane?

Now, open up the windows for the sprExplosion sprite and center it. The origin coordinates should be (35,
50), since the sprite is 71 x 100 pixels large. Then, open the sprEnemy1 sprite and enter (32, 32) as the
origin of that sprite. Good. Now all sprites are what I called "centered".

Open the objPlayer object and select the <Space> key event. Double-click on the Execute a piece of
code action in the action sequence to open up its code window. This is where an instance of the objBullet
object is created. We want the bullet to be created a bit higher up on the screen. Higher up means lower y-
coordinate. So, change the instance_create line so that it reads:

instance_create(x, y - 15, objBullet);

Close the code window, save the game and try it out. Hmm. A bit better, but the bullet should appear even
higher up. OK. Let us change the code again. This time, change it to:

instance_create(x, y - 25, objBullet);

Then try out the game again. This looks good to me. Sometimes you just have to try out different values
until things look good.

Smoother enemy appearance
The enemies still pop up out of nowhere. It would be nicer if they kind of flew into the screen. That could be
fixed through making sure they are created outside the screen and then fly into it. This will bring up a small
problem with the Outside event, but we will look at that as it comes up.

Open up the script called CreateEnemy1. This is where the enemy instances are created. The
instance_create function is used to create an enemy instance at a specified x and y coordinate. We want
to change this so that the enemy is created higher up, which means we will have to lower the y coordinate
of the creation point. Change the first line in the script to read:

instance_create(floor(random(room_width)), -64, objEnemy1);

Save and run the game. You will notice that no enemies appear at all. Why is this? This is because of the
Outside event of the enemy object. Open the object objEnemy1 and select the Outside event. You will
see that this event executes the script called EnemyDisappear. This script is called every time the enemy
instance is located outside the screen. But we do not want the enemy to disappear when the instance is
above the screen, only when it is below the screen. OK, so let us do a test in the EnemyDisappear script.
Open the script and change it so that it looks like this:

if (y > room_height + sprite_yoffset) then
{
 instance_destroy();
}

That will check if the enemy is located below the screen, that is, if the y coordinate of the enemy is larger
than the screen height plus the enemy sprite origin. The y coordinate of the sprite origin is automatically
stored in the variable sprite_yoffset, which we use here. This is needed, because otherwise the enemy
would be destroyed as soon as the origin was outside the screen, which would mean that half the enemy
sprite would still be inside the screen and visible. Not good. This script will make sure that the entire enemy
sprite is outside the screen before destroying the instance.

If you try out the game now, you should notice that the enemies appear smoothly flying into the screen, and
flying out from the screen. But there is a part of an explosion showing up as the enemies are destroyed.
This must be corrected. The explosion instance is created in the "DESTROY" event of the objEnemy1
object. Open it up and double-click on the action Execute a piece of code to edit it.

All this code does is to create an instance of the objExplosion object. We could make it test the y
coordinate of the enemy before creating the explosion so that the explosion is only created if the enemy is
still on the screen.

To do that, we test that the y coordinate is less than the screen height plus the sprite y origin. Change the
script so that it reads:

if (y <= room_height + sprite_yoffset) then
{
 instance_create(x, y, objExplosion);
}

Close the code window and try the game. Now the enemies should disappear silently, without and explosion.
But the explosion should still be created if the enemies are shot down.

Going global
One thing that I think is very important to know of is global variables. They are variables that do not belong
to any particular instance, but are accessible from all instances, all the time. You could think of it as if there
was an ever-present instance called "global" that contained all global variables.

Global variables are good for containing values like score, health, max and min values and such. The first
thing that we are going to use a global variable for is the speed of the player. I think the speed is a bit too
slow. To change the speed now requires the change of a number at four different places in the code. It
would be better if the speed could be changed by just changing the code in a single place. This could be
done in other ways, but we will use a global variable.

Create a script that is called GameStart. Add the following line to the script:

global.playerMaxSpeed = 8;

Note the word global and the dot before the variable name. This is how global variables are used. To read a
bit more about global variables, read section The Game Maker Language (GML) -> GML Language
Overview -> Addressing variables in other instances of the Game Maker Help File.

Now we need to execute this script from somewhere. The CREATE event of the objPlayer object seems like
a good place. Select that event, add an Execute a script action, and select the script we just created. Then
move the action up one step so that it is on the top of the list (before the PlayerInit script). This is done by
just dragging the action to the top of the list.

Now, in the <Left> key event of objPlayer, change the code that is executed there to:

x -= global.playerMaxSpeed;

The code in the <Right> key event should read:

x += global.playerMaxSpeed;

And the code in the <Up> key event should be:

y -= global.playerMaxSpeed;

Finally, open the script MovePlayerDown and change the code to:

y += global.playerMaxSpeed;

Now, save and run the game.

If we later decide to change the player speed, we only need to change the code in one place; in the script
GameStart.

It is a good programming practice to use numbers as little as possible in your games. The numbers should
instead be defined in an initialization script, like GameStart, to global variables or something like that, and
then those variables should be used instead. This greatly simplifies any changes that need to be done to the
game later.

We will add some other things to the GameStart script. First, we add the maximum energy level of the
player. Like this:

global.playerMaxEnergy = 100;

Then we change the myEnergy line in the script PlayerInit to read:

myEnergy = global.playerMaxEnergy;

It is a good thing to have all those value definitions in a single place.

We continue adding values to the "GameStart" script until it looks like this:

global.playerMaxSpeed = 8;
global.playerMaxEnergy = 100;
global.enemy1MaxEnergy = 100;
global.enemy1Damage = 30;
global.bulletToEnemy1Damage = 50;

There may be more values that can be changed like this, but I will stop here. To use these global variables,
we need to change some scripts a bit. Open the script Enemy1Init and change the setting of the
myEnergy variable so that it reads:

myEnergy = global.enemy1MaxEnergy;

Then open the script PlayerEnemy1Collision and change the decrease of the myEnergy variable to:

myEnergy -= global.enemy1Damage;

Finally, open the BulletEnemyCollision and change the energy decrease statement to:

myEnergy -= global.bulletToEnemy1Damage;

Now it is much easier to change those parameters of the game. Save the game. There should be no need to
run it, other than to see that no errors appear. Nothing should have changed regarding the gameplay.

Where's my energy?
We have been talking a bit about the energy of the player and that if the energy goes down to 0 the player
is destroyed. However, so far we have not seen any indication of that energy. Time to make an energy
meter.

The energy meter will be created without using any kind of sprite. Instead we will have a first look at some
of the other drawing possibilities of Game Maker.

In order to draw anything on the screen, an object is needed. We will create another controller object to do
this. There will not be any sprite drawn, but we use a sprite anyway, just to represent the instance of the
controller object in the room. So, create a new sprite, call it sprPlayerController and load the image
SatelliteDish.gif from the resources.

Then create a new object, objPlayerController and select the sprPlayerController sprite for it. Do NOT
make the new object invisible. I mean this! I have received a huge amount of emails from people who claim
that the energy bar does not show up even though they have followed this tutorial by the letter. Then, when
I look at their file, I see that they have made the object objPlayerController invisible. I agree that most
controllers should be invisible, but this one is used to draw an energy bar and therefore needs to be visible,
otherwise the DRAW event of the object will not be executed. You will understand what I mean later on.

Add an instance of the new object to the room. This object will be used to create the objPlayer instance.
Therefore the objPlayer instance should be removed from the room. Remove the instance of objPlayer
(the SR71 plane) from the room through right-clicking on it.

Now the player will not exist when first starting the game, we will have to create the player from the
controller. The reason for doing this is that it is not always clear in which order Game Maker creates the
instances, at least I do not know in which order they are created. So we must make sure that first the
controller instance is created, and then the player instance. Another reason is that the controller needs to
know the instance ID of the player instance, and that is easiest to retrieve through creating the player
instance from the controller object.

The script GameStart should be run by the objPlayerController instead of the objPlayer. Drag the
Execute a script action that executes the GameStart script from the CREATE event of objPlayer to the
CREATE event of the objPlayerController object.

Now we need a script to create the player. Create a new script and call it CreatePlayer. Add this line:

myPlayer = instance_create(room_width / 2, 400, objPlayer);

That will create an instance of the objPlayer object. The x coordinate will be the center of the room
(room_width / 2), and the y coordinate is somewhere along the bottom of the screen (80 pixels from the
bottom).

Notice that I have written "myPlayer = " in front of the instance_create function. That is because when the
instance_create function has created the instance of the player, it returns a value. That is how a function
works, remember? Usually we do not care about that value, and that is OK. But this time we want to store
the returned value in a local variable, myPlayer. The value that is returned is the instance ID of the newly
created player instance. We will use it later to retrieve some local variables from the player instance.

In the object window for objPlayerController, select the CREATE event, add an Execute a script action
and select the CreatePlayer for that action.

Now it is time to draw the energy bar. Add a new script (don't you love them already? :)) and call it
DrawEnergyBar.

Actually, Game Maker includes a feature to draw an energy bar quite easily, but I want to show you how to
do it manually, just for the sake of learning new things.

In the DRAW event of the objPlayerController object, add an Execute a script action. Select the
DrawEnergyBar script.

Then, go back to the script. I intend to draw an energy bar that looks something like this:

First we draw the gray background rectangle, and then we draw the blue energy rectangle on top of it. The
blue frame around the rectangle above is just the background from the room showing. Don't bother with
that.

To draw shapes in Game Maker we first need to set a color. Enter this lines into the script:

draw_set_color(make_color_rgb(150, 150, 150));

The make_color_rgb function creates a color out of three color values. The values inside the parentheses
are the red, green and blue levels of the color. The numbers range from 0 to 255, which means that
make_color_rgb(255, 0, 0) would create a very red color, and make_color_rgb(255, 0, 255) would
create a very violet color (red and blue). The values used in the script (150, 150, 150) will create a
medium gray color.

When the color setting is done, we could draw the rectangle. To do that we need two pairs of coordinates,
(x1, y1) and (x2, y2). See the image below:

We want to put the energy bar in the lower left corner of the screen, so we could do like this:

x1 = 5;
y1 = room_height - 15;
x2 = 110;
y2 = room_height - 5;
draw_rectangle(x1, y1, x2, y2, false);

Now we have created four variables and used them as coordinates in the "draw_rectangle" function. We
could just have entered the coordinate calculations directly into the "draw_rectangle" function, but the line
would have been so long, so I chose this way to represent them. The last value in the draw_rectangle
function determines if the rectangle should be an outline (true) or a filled rectangle (false).

Finally we want to draw the blue bar that represents the energy itself. Change the color to some green color
and draw the new rectangle:

draw_set_color(make_color_rgb(0, 0, 255));
x1 = 7;
y1 = room_height - 13;
x2 = 7 + myPlayer.myEnergy;
y2 = room_height - 7;
draw_rectangle(x1, y1, x2, y2, false);

Here we see what the myPlayer variable should be used for. It is used for getting the myEnergy variable
from the objPlayer instance that was created in an earlier script. To get a local variable from another
instance, you use the instance ID of that instance, followed by a dot and the name of the local variable
that you want. Voilà! (Means "there you go" in French. Honest!)

There is one thing about this that is dangerous though! If the player instance, with instance ID myPlayer is
destroyed, it is no longer possible to access the local variable myEnergy through myPlayer.myEnergy.
This results in a fatal error and Windows may freeze completely. The best thing to do is to test if the
myPlayer instance exists before using its local variables. This is done using the function instance_exists
like this:

if (instance_exists(myPlayer))

Now, this is the complete code of the DrawEnergyBar script:

draw_set_color(make_color_rgb(150, 150, 150));
x1 = 5;
y1 = room_height - 15;
x2 = 110;
y2 = room_height - 5;
draw_rectangle(x1, y1, x2, y2, false);

if (instance_exists(myPlayer))
{
 draw_set_color(make_color_rgb(0, 0, 255));
 x1 = 7;
 y1 = room_height - 13;
 x2 = 7 + myPlayer.myEnergy;
 y2 = room_height - 7;
 draw_rectangle(x1, y1, x2, y2, false);
}

Make sure that the script contains the code above, save the game and test it.

A blue energy bar with a gray background will now be visible in the lower left corner of the screen.
If the energy bar does not show up on the screen, double-check to see that the object objPlayerController
really is set to be visible (see the beginning of this section) and that it is added to the room.

Life, the Universe and Everything

I don't know about you, but I am getting really tired of the blue background. Time to do something about
that.

A galaxy far, far away
The most common background for space games would be some stars whooshing by. I know that the SR71
and the MIG41 do not fly in space, but I, being the supreme ruler of this document, have decided to let
them into the great void.

I did not find any good enough space background in the Game Maker directory, at least not a scrollable one,
so we will have to create our own. But I will keep it simple.

First we will create a background image that looks like simple stars. Create a new background. Call it
bgrStars1. Click the Edit Background button. This will open up the Game Maker background editor. It is
not the best 2D graphics application in the world, but it knows a few tricks and is quite good for a starter.

The first thing we will do is to set the size of the background image. The background image will be "copied"
over the entire room if it is not as big as the room. This is called "tiling". To not make the background look
too regular we will have to increase the size of this background image a bit.

Select the menu choice Transform -> Resize Canvas. In the window that appears, look for the two
textboxes just before the two "pixels" words. Enter the number 200 in both of these. If the checkbox Keep
aspect ratio is checked, you will only need to change one of them, and the other will follow.
Click OK. Now our background image should be 200 x 200 pixels large.

Select the black color in the color selection box on the right hand of the window. Now select the bucket icon
that is called Fill an area. Then click in the image. The entire image should now be black.
Next, select the white color and click on the pencil icon that is called Draw on the image. Use it to click a
few stars scattered randomly around the image. Do not draw too many. I drew only 3, and the result looked
OK in the game. This is how my image looked:

Click OK to close the image editor. Now, open the room window through double-clicking on Room1. Then
click the Backgrounds tab in the room window. Here it is possible to select which background images
should be visible in the room. Select Background 0. Then, in the selection box a bit further down, select
the background image we just created, bgrStars1. Also make sure that the checkbox "Visible when room
starts" is checked. The checkboxes "Tile Hor." and "Tile Vert." should also be checked.

Another thing to do here is to uncheck the checkbox marked Draw background color. This will turn of the
blue color that has been used as background so far. It is no longer needed since the new background image
will cover the entire room.

OK. We are done here for now. Click OK, save the game and test it.

If everything is as it should, there should now be some stars as a background to the game. It looks rather
boring though. Lets add some movement to the stars.

Open the Room1 window and click on the Backgrounds tab again. Far down in the tab you will find a
textbox marked Vert. speed. It is currently set to 0. Set it to 3. Click OK, save and test the game again.

But we are not done with the background yet.

Cool word: Parallax
Time to add some depth to the background. We will use an illusion called "Parallax". It is based on the fact
that when you are moving and looking sideways, like out of the side window of your car, objects that are far
away, like trees at the horizon, look like they move past slowly, while objects that are close to the car, like
rails, road markings and moose, swish by really fast. This can be used to create an illusion too. The human
eye is tricked and the brain thinks that what the eyes see has 3-dimensional depth.

Create a new background image, call it bgrStars2, and resize it to 200 x 200 pixels, just like above. Paint it
black and add some stars to it. But this time the color of the stars should be light gray, and not completely
white. You can add a few more stars to this background. Five, maybe.

Then open the room window again and click the Background tab. Select Background 1 and select the
background image bgStars2 for that background. Make sure the Visible when room starts checkbox is
checked. Give the new background a Vert. speed of 2.

Close the window and try the game. It still looks like a flat starfield. That is because we have forgotten to
make the new starfield transparent. OK. Open the background bgrStars2, and check the little box called
Transparent. Then save and try the game again. Alright! Now there are two starfields moving at different
speeds, creating a small illusion of depth.

To make it even better, we will add a third starfield layer. Do just like the second background, but call this
one bgrStars3, and use a darker gray color for the stars in it. You can add a bit more stars too, maybe 10
or so. Then check the Transparent checkbox and open up the room. Add the new starfield background as
Background 2 and set the Vert. speed to 1.

For the third time, test the game. That looks quite OK, does it not? With just a little bit imagination you will
see a "deep" space moving past beneath the plane.

Enemy fire
It is now time to make the enemies shoot back at you. That will not be so difficult, now that you know a bit
about GML. The plan is that with random intervals, the enemy planes should fire a bullet at you. Whenever a
bullet hits you, your energy would decrease by 10 units.

First we need a new bullet object. We should not use the one that is fired from the player plane, even if we
are going to reuse its sprite.

Create a new object, call it objEnemy1Bullet and select the sprite sprBullet for it. Now we need the
enemy plane to shoot this bullet at the player. Create a new script for this and call it Enemy1Fire. The
script should create a bullet instance and set the alarm timer of the enemy so that another bullet can be
created.

Write this in the script:

instance_create(x, y, objEnemy1Bullet);

That will create an instance of the objEnemy1Bullet object in the same coordinates as the enemy plane is.
But it is not going anywhere. We need to give it a speed and aim it towards the player. Fortunately there is
a Game Maker function that makes this very easy. It is called move_towards_point, and then you tell the
function to which coordinates the instance should move, and how fast.

Now you think that it is as easy as to just write the function. But no, if we just wrote this function, it would
be the enemy plane that would move towards the player, and not the bullet that would. To fix that we need
to get the Instance ID of the created bullet instance. So, change the line you just wrote to this:

myBullet = instance_create(x, y, objEnemy1Bullet);

Now we have got the instance ID of the new bullet and can use it in a with statement. Like this:

with (myBullet) move_towards_point(objPlayer.x, objPlayer.y, 5);

That will start the bullet in the direction where the player is and with the speed 5. Good. Time to set the
alarm to go off after some time again, to create another bullet. Add this line to the code:

alarm[0] = 60 + random(60);

That may seem a bit strange, but what we have done here is to add the value 60 and a random value
between 0 and 59.99999. Thus, the time for the next bullet to be created will be somewhere between b
and 4 seconds (60 and 119.99999 frames). Here I do not care so much about the decimals and such,
because we will not be able to notice them in the game.

The code in the script Enemy1Fire should now look like this:´

myBullet = instance_create(x, y, objEnemy1Bullet);
with (myBullet) move_towards_point(objPlayer.x, objPlayer.y, 5);
alarm[0] = 60 + random(60);

What is left to do now is to add the script to the alarm 0 event of the object objEnemy1. Do that now. You
should know how by now. We also need to make sure that the script is run the first time. This is done by
setting the alarm in the script that is run at the creation of the enemy instance. That script is called
Enemy1Init. Open up the script and add the following line to it:´

alarm[0] = random(60);

Here we do not care to add the "60" in front of the random function. I just did not feel like it. Do it if you
want, but then no enemy plane will fire until they have existed for 2 seconds. Now they fire the first time
between 0 and 2 seconds after their creation.

The bullet should, just like the player's bullets, disappear once it has moved outside the screen. In the

objEnemy1Bullet object, add the Outside room event and add a Destroy the instance from the Main1
tab of the action panel. Accept the default settings and click OK.

Finally, the bullet should do some damage to the player. Create a new script and call it
PlayerBullet1Collision. Here we should destroy the bullet instance as well as lower the energy of the
player. We also need to check if the player energy is 0 or less, and then destroy the player. This means that
the code should look about the same as in the PlayerEnemy1Collision script. Write down this code in the
new script:

// Destroy the bullet
with (other) instance_destroy();
// Lower the player's energy
myEnergy -= global.bullet1Damage;
// Check if the energy is zero or less.
if (myEnergy <= 0)
{
 instance_destroy();
}

Notice that I have use the global variable global.bullet1Damage to lower the energy of the player. This
variable must be defined. That is done through adding it to the GameStart script. Add this line to that
script:

global.bullet1Damage = 10;

This means that when the enemy bullet hits the player, the energy will be lowered by 10 units.

Add the PlayerBullet1Collision script to the objPlayer object, in the collision event with the
objEnemy1Bullet object.

Compare the two scripts PlayerBullet1Collision and PlayerEnemy1Collision. The last if statement and
the statement it contains look the same on the two scripts. The first line, too, looks the same, but we will
ignore it for now.

Since we use the same block of code in more than one place, it is a good idea to put it in its own script. So,
create a new script and call it CheckPlayerEnergy. Copy the entire if statement (including the code inside
the curly braces) from the PlayerBullet1Collision script to the new script, so it looks like this:

// Check if the energy is zero or less.
if (myEnergy <= 0)
{
 instance_destroy();
}

Then we delete the if statements from the other two scripts, and instead call on this new script. Just to
show how a script can be called from another script. Instead of the if statements in those two scripts, it
should look like this:

CheckPlayerEnergy();

There. That is how easy it is to use a script from another script.

To be on the safe side, here is a list of how the entire PlayerBullet1Collision script should look like:

// Destroy the bullet
with (other) instance_destroy();
// Lower the player's energy
myEnergy -= global.bullet1Damage;
// Check the player energy.
CheckPlayerEnergy();

And the PlayerEnemy1Collision script:

with (other) instance_destroy();
myEnergy -= global.enemy1Damage;
CheckPlayerEnergy();

Save the game and try it. When the enemy planes shoot at you, and you are hit, the energy will decrease
until the plane is destroyed. Good. But wait! Once the player plane is destroyed you get an error message
saying "Unknown variable or function" and referring to the "move_towards_point" function when the enemy
bullet is created.

The reason for this is that we made the bullets go for the player plane, and once the plane is destroyed, the
bullets no longer know where to go. Or, more programmatically speaking, we are referring to an instance
that no longer exists. So, we will have to check if it exists before firing the bullet.

Open up the script Enemy1Fire. This is where the enemy bullet is created. Now we need to test if an
instance of the objPlayer is available. That can be done with the instance_exists function. Here is its
definition from the manual:

instance_exists(obj) Returns whether an instance of type obj exists. obj can be an object, an
instance id, or the keyword all.

So, we need to use the if statement and the instance_exists function in the script. Make the script look
like this:

if (instance_exists(objPlayer)) then
{
 myBullet = instance_create(x, y, objEnemy1Bullet);
 with (myBullet) move_towards_point(objPlayer.x, objPlayer.y, 5);
}
alarm[0] = 60 + random(60);

Note that the alarm[0] setting is not included inside the if statement. That is because we want the script to
activate a new alarm event even if the player plane does not exist at the moment.

Nice. This will only create the bullet and move it if the player plane exists in the game.

Meaning of life
To round up this programming guide, I think it would be a good idea to add some life to the game, as well
as some scoring.

There are built-in lives and score functionalities that are useful especially for displaying score and lives, but,
again, for the sake of learning, we will look on how to make our own score and lives display. After all, we
used the built-in functions in lessons 3 and 4. :)

Open up the script CreatePlayer. This is where the player instance is created by the objPlayerController.
Add the line:

playerLives = 3;

This means that the number of lives that the player has is stored in the instance of the
objPlayerController object.

Now we need to decrease the number of lives every time the player explodes. That is done in the
CheckPlayerEnergy script. Open it up.

Inside the if statement here, we want to lower the number of lives of the objPlayerController. We also
want to make sure that the player is created again after some time. For that, we will use the alarm function
of the objPlayerController. So, inside the if statement, before the instance_destroy function, add these
lines:

objPlayerController.playerLives -= 1;
objPlayerController.alarm[0] = 60;

That will decrease the number of lives with 1, and set the alarm 0 event of the objPlayerController to
trigger after 60 frames (2 seconds). Since we know that there always will be exactly one instance of the
objPlayerController object in the game, it is OK to reference it using its object name, like above. This
will be like referencing its single instance. Take great care when referencing other objects like this if they
have multiple instances.

So, now the entire CheckPlayerEnergy script should look like this:

if (myEnergy <= 0)
{
 objPlayerController.playerLives -= 1;
 objPlayerController.alarm[0] = 60;
 instance_destroy();
}

Time to create a new script that takes care of the creation of the new player, if there are any lives left. Call
the script LivesCheck. Here we should check if the player has any lives left, and, if so, create a new
instance of the player object. Enter this code:

if (playerLives > 0)
{
 myPlayer = instance_create(room_width / 2, 400, objPlayer);
}
else
{
 game_end();
}

Here I have introduced the else statement. It can be used after an if statement, just like the ELSE action
that we have used earlier. It works so that if the expression in the if statement (playerLives > 0 in our case)
is not true, the statements inside the else statement are executed. In this example it would mean that if
playerLives is not greater than 0, the game will end. That is what the game_end() function is for.

Now we need to add this new script to the Alarm 0 event of the objPlayerController object. Do that.

Save and test the game. You should now have three lives to use before the game ends.

It would be nice if the lives could be displayed for the user in some way. To do that, open up the script
DrawEnergyBar. This is where the energy bar is drawn. How about drawing a small version of the player's
plane sprite next to the energy bar for each life?

Select the sprite called sprPlayer and right-click on its name in the Resource Explorer on the left of Game
Maker's main window. Select Duplicate from the pop-up menu. This will create a duplicate of the player
sprite. Open up the new sprite and call it sprLife. Click the Edit Sprite button. Select the menu Transform
-> Stretch. Enter 50% in the Width and Height boxes. Select Excellent in the Quality selector. Click
OK. Click OK again. Now we have a small version of the player sprite that can be good to use as a life
sprite. We need to change the origin of the sprite though, so that it is centered. Set the Origin to X: 13
and Y: 19. Then click OK to close this window.

Go back to the DrawEnergyBar script. To draw a sprite in the screen, we will use the function
draw_sprite. Here is its definition:

draw_sprite(sprite, subimg, x, y) Draws subimage subimg (-1 = current) of the sprite with index
sprite with its origin at position (x, y).

We will use the sprite sprLife and its first subimage, which has number 0. So the function will be used as
(the coordinates are not decided yet):

draw_sprite(sprLife, 0, someXCoordinate, someYCoordinate);

We will also use a new language statement, the for statement in order to draw the correct number of life
sprites. Please have a look at the definition of the for statement in the Game Maker Help File.

For loops are used to repeat a bunch of statements. In programming lingo this is called iterating. An
example of a for statement could be this:

number = 8;
for (i = 0; i < 5; i += 1)
{
 number += 1;
}

What this program will do is first to set the variable number to 8. Then it will enter the for loop, which adds
the value 1 to the variable number a couple of times. But how many? The result is that the variable
number will be 13 when this is done. That means that the for loop has been run through 5 times.

The first time the for loop is run, the variable i is set to 0. Then the expression in the middle of the for
statement parenthesis is checked (i < 5). If this is true, the statement inside the for loop is executed
(number += 1). Then, finally the last statement of the for loop parenthesis (i += 1) is executed, which
will make the variable i now hold the value 1. Once again the middle expression is checked (i < 5). It is still
true, and the two following statements are executed again. This happens again until the variable i becomes
5. Then the expression i < 5 is then not true anymore, and the for loop exits. Good.

What we want to do is to draw the same number of sprites as the value of the playerLives variable. This
could be done through adding the following code to the end of the DrawEnergyBar script:

for (i = 0; i < playerLives; i += 1)
{
 draw_sprite(sprLife, 0, 140 + 30 * i, room_height - 25);
}

Wow, that was a lot at the same time. First, the for loop will be executed as many times as the value of the
playerLives variable, right? The first time the for loop is executed, the variable i will be 0. That means that
the x coordinate of the first sprite that is drawn will be 140 + 30 * 0, which is 140. The next time the for
loop is executed, i will be 1. Thus, the x coordinate for the second sprite will be 140 + 30 * 1, which is 170.
Finally, the last time the for loop is executed, i will be 2, which makes the x coordinate of the last sprite
140 + 30 * 2 = 200. After that, i will be 3, and the for loop is exited. The y coordinate is the same all the
time, 25 pixels from the bottom of the room.

This means that there will be three sprites drawn next to each other down the bottom left of the screen,
next to the energy bar. When the player loses one life, the variable playerLives becomes 2, and the for
loop will only be run through twice, thus only drawing 2 sprites. Great, huh?

Scoring
Of course we need to add some scores to the game. Otherwise it would be uninteresting to shoot down the
enemies.

There is a built-in variable called score that we will use for this. That makes the score automatically show
up in the Window's caption.

First, we need to set the score to 0 when the game starts. Open the script called GameStart. Add the line

score = 0;

to that script.

We also need to decide how many scores the player should get for destroying one enemy. I think we should
give the player 100 scores for it. Add the following line to the GameStart script:

global.enemy1Score = 100;

Good. Now we need to add that score to the score variable whenever the player has destroyed an enemy.
This happens in two scripts. First, open up the script called PlayerEnemy1Collision. Add the following line
to the end of that script:

score += global.enemy1Score;

Then, open the script called BulletEnemyCollision. Here it is a little bit trickier, since we have to add the
score addition inside the if statement here. Just to make sure no mistakes are made, I will print the entire
script here as it will look after the addition of the score += global.enemy1Score:

with (other)
{
 // Lower enemy energy
 myEnergy -= global.bulletToEnemy1Damage;
 // Check if enemy energy is 0 or less
 if (myEnergy <= 0)
 {
 // If so, destroy enemy.
 instance_destroy();
 // NEW!!! Add score to the player
 score += global.enemy1Score;
 }
}
// Destroy this bullet
instance_destroy();

That would be it. Save the game and try it out.

Conclusion

This represents the end of the sixth lecture. I hope you have found your way through it. :) Some of the
parts in these GML lectures are a bit strange, since the problem might be easier solved with drag-and-drop
actions, but I wanted you show you ways to solve it with the Game Maker Language too, just so that you
know how it is done. Then you can decide yourself which is the best way.

Actually, we will continue on this space game during the next lecture too, if it goes as I have planned. We
should then look a bit at the other entities in Game Maker - Time Lines and Paths.

Good luck!

Carl

Assignments

Add sounds to the shoot'em up game

Due date: Wednesday, 31 August 2005, 08:00 AM (50 days 17 hours early)
Maximum grade: 100

In this assignment, you should add sounds to the game that was made in lecture 6.

The sounds should be added using the sound_play command in a piece of code.

Try to find some nice sounds on the internet (or in your own sounds collection ;)). One
good place to start looking is: http://www.a1freesoundeffects.com/ .

The following events should have sounds:

- Player shooting a bullet

- Enemy shooting a bullet

- Bullet hitting enemy (without killing)

- Bullet hitting player (without killing)

- Player exploding

- Enemy exploding

As always, zip the -gmd file and upload it here for grading.

Good luck!

Regards
Carl

Read the GM Manual

Due date: Wednesday, 31 August 2005, 08:00 AM (50 days 17 hours early)
Maximum grade: 0

Hi!

I want you now to read the following parts of the GM manual (or help file):

All these sections are under the main section "The Game Maker Language (GML)"

- Game Play
- User Interaction
- Game Graphics
- Sound and music

Regards
Carl

http://www.a1freesoundeffects.com/

