
Lecture 8 - Introduction to multiplayer

Written by Carl Gustafsson

Goal of the lecture

After this lecture, the reader should know how to create a connection between two computers in Game
Maker. The reader should also have a basic understanding in how to construct multiplayer games, i.e.
games that are played across more than one computer.

This lecture was revised for round 2 of the Game Maker programming course at www.gameuniv.net.
Changes to the original document are shown with slightly greenish background. If you read this document
for the first time, just ignore those markings and read it as if nothing was marked.

This lecture was also revised for round 3 of the Game Maker programming course at www.gameuniv.net.
Changes to the previous revision of the document are shown with slightly blueish background. People
reading this document for the first time could ignore the different background colors. Most screenshots are
revised, but the change is very little, so they are not marked.

Introduction

I got the feeling that there were some of you who were interested in making multiplayer games. Therefore I
will here try to introduce you all to how it can be done. Please understand that making a multiplayer game is
not a trivial task. Even so, I will not go further than connecting two (2) computers together in a game. Using
even more connections will be even harder and I must confess that I have not tried that myself yet.

I have however managed to get a two-player game to work across the Internet (see "DogFight" on my web
page, hem.passagen.se/birchdale/carl, even though I made it with GM 4.1, so there will probably be
problems running it with the new version of GM), so, I intend to try and teach you how to do that.

Making multiplayer games it a lot easier if you have access to two different computers connected via
network cards (in a small LAN). It is possible to run multiple instances of the game on the same computer if
you first make an exe file out of it, but it is very hard to playtest it, since you can only have one instance
active at the same time.

1 (21)

http://www.gameuniv.net/
http://hem.passagen.se/birchdale/carl
http://www.gameuniv.net/

Theoretically speaking

We will try to look a bit at the theory behind it all first, before we get to actually doing it. (Just like learning
to fly. :))

The connection
The first thing that is done in a multiplayer is to decide whether or not the computer will be a master or a
slave in the multiplayer games. All multiplayer games have exactly one master (could be a "dedicated
server") and any number of slaves (sometimes called "clients").

The master creates a new connection and a new session and then waits for the slave to connect to it. The
slave also creates a new connection, and thereafter joins a session that it finds on the connection. Below is a
little image that might help in explaining how it works:

The first thing that is made is thus the connection. I must say that I am not quite at home in the nitty-
gritty details of the network protocols, but a connection is a kind of initialization of the protocols.

2 (21)

When making the connection, a decision has to be made to determine which protocol to use. Game Maker
provides access to four different kinds of protocols:

• IPX

• TCP/IP

• Modem

• Serial cable ("Null modem")

Each of these protocols are quickly explained in the Game Maker manual, so please read section The Game
Maker Language / Multiplayer Games / Setting up a connection of the manual before continuing.

So, now you know that the IPX protocol and the TCP/IP protocols are useful for Local Area Networks (LANs),
the TCP/IP protocol is useful also for Internet connections, the modem protocol is useful for modem
connections (duh) and the Serial protocol is useful for connections between two computers using a twisted
serial cable, a "null modem".

(I know it means tautology to write "TCP/IP protocol", since the word "protocol" is included in both
acronyms, but I find it better to write it down than to leave it out. Here in Sweden it is even common to say
"CD-disc", which would then be "Compact-Disc-disc". Bah! Note that this side note is mostly aimed at those
people that are kind enough to provide me with lists of linguistic errors from my lectures. (i.e. Mr
Scarborough and Ms Pahl))

There are a few differences in how the master and the slave create their connections when it comes to the
arguments that are passed to the initialization function. The slave needs to provide either an IP address or a
telephone number to the master (depending on the protocol used), which the master does not need to do.

The session
Once the connection has been made, the master can create a new session. A session is essentially a game
round. It can also be called an instance of the game. When creating the session, the master needs to
provide a name for the session, the number of players that can join it to play, and the name of the player
that plays on the master computer.

When the master has created a session, the slave can join it. This usually means searching for possible
sessions and displaying them to the player. The player then decides on which session he wants to join.
There can thus be multiple sessions going on at once, especially if the connection is not made to a certain
computer (via Internet, Modem or serial) but via a LAN of some kind. Especially when using the IPX protocol
it is important to let the player decide which session to join, since there can be lots of sessions going on in
one LAN.

Once the master detects that there are enough players that have joined the session (possibly decided by the
master player watching the number of joined "slave players", the game can begin, and this is where the
really hard stuff starts - synchronizing everything between all the players so that everyone sees the same
game world. This is especially hard in real-time games (like action games), but not that tough in turn-based
games like chess and some other strategic games.

The synchronization
So, now the game is running and all the players are connected to the master and have joined the session.
Time to make the data flow.

There are two ways of synchronizing the events between the players. One way is of using "Shared data".
Shared data is kind of "super global variables". That means that those variables are global to the entire
session and as soon as one player changes a variable, the change is reflected to all the other players. A
shared data variable works about the same as other variables in Game Maker, except you can not call them
what you want, and there is a limited amount of them (10.001 if I am correct). I find it hard to imagine that
anyone would need more than that, but since Bill Gates is said to have assumed that 640 kB is enough RAM
for anyone, I better keep my mouth shut on this. :)

The other way of sharing data is by the use of "messages". The player can decide to send a message to one
or all of the other players. A message contains the ID of the player that should receive it (which can be all
players), a message ID, and a value (like a variable).

I usually think like this: Use shared data for things that always need updating, like player positions, and use
messages for things that does not happen as often, such as "Player 1 fires a bullet".

3 (21)

Trying it out

Making a connection
We will now try to make a connection. I will write examples of how it is made with the IPX and the TCP/IP
protocol. If you need the other connection types, I think you can extrapolate from there.

Create a new game and add a new object. Call it objConnection. Then add a new script and call it
GeneralConnect. In this script we will make the multiplayer connection. We will at first go through a lot of
code snippets and I will try to explain them. Then we will put it all together in one large script at the end.

First, we will ask the player which protocol he wishes to use. We will only provide the IPX and the TCP/IP
protocols here. In order to ask the player that, we use a pop-up menu. Add this to the empty script we just
created:

// Ask player for protocol.
protocolChoice = show_menu("IPX|TCP/IP|Quit", 0);

We have not used the show_menu function earlier. It will display a pop-up menu, similar to the one that is
displayed if you right-click the mouse in any Windows window. The first parameter to the function is a string
that contains all the items of the menu. Here we have three items: IPX, TCP/IP and Quit. They are
separated with a vertical line, also known as a "pipe". The second parameter tells Game Maker the default
menu choice (0 means the first choice). When the player selects a menu item, the result is returned to
Game Maker as a number. This number is above stored in the variable protocolChoice. If the number is 0,
the user chose the first item. If it is 1, he chose the second item, and so on. So, after the call to
show_menu we will have to check what the result of the menu choice was.

It is done like this (add it after the previous lines in the script):

switch (protocolChoice)
{
 case 0:
 // IPX Connection
 break;
 case 1:
 // TCP/IP Connection
 break;
 case 2:
 // Quit the script
 exit;
 break;
}

Ah. A hard introduction to the switch/case statement. This statement works similar to a range of if
statements. It checks the expression inside the parentheses (protocolChoice) and then it runs the
corresponding case statement. So, if protocolChoice is 0, the code inside the case 0: statement will run,
all the way up to the break statement, which breaks out of it all. If protocolChoice is 1, the code inside
the case 1: statement will run until a break is found. This goes on until the ending } in the switch
statement. There is even a statement that corresponds to the else statement in if statements and will be
executed if none of the above cases are true. It is called default:. It is wise to add a default: statement to
the end of the switch, like this:

4 (21)

switch (protocolChoice)
{
 case 0:
 // IPX Connection
 break;
 case 1:
 // TCP/IP Connection
 break;
 case 2:
 // Quit the script
 exit;
 break;
 default:
 // None of the above happened...
 show_message("Now what???");
 game_end();
 break;
}

We now have a little menu skeleton. But we still need to add the actual code that makes the connections.

But before that, we will make the player choose whether he wants to create a game or join a game. I use
these terms (create/join game) because I think those are the most common that are used in today's
multiplayer games. If the player chooses to create a game, he becomes the master. If he chooses to join
a game, he becomes the slave.

We need to know whether to create or join before making the connection, because there are different
connection function calls depending on this situation. This is checked in a way that is similar to the protocol
check:

// Ask the player for create/join
sessionChoice = ("Create game|Join game|Quit", 0);

Now it is beginning to be a lot of numbers to keep in mind. If the player chose "Create game" in this second
menu, the variable sessionChoice will be 0. Hmm. Could there be an easier way of keeping track of that? I
use to make some constants that I can use instead of the literal numbers. You could add this to the start of
the script:

CH_IPX = 0;
CH_TCPIP = 1;
CH_CREATE = 0;
CH_JOIN = 1;

If the player chooses to make the connection via the IPX protocol, we will call on the function
mplay_init_ipx(). That function does not have any parameters at all and does not differ depending on the
creation or joining of a session. On the other hand, if the player chooses the TCP/IP protocol, we will call
the function mplay_init_tcpip("<IP_ADDRESS>"). Now, if the player wants to create a game, we just
call that function with an empty string. But, if the player wants to join a game, we need to provide an "IP
address". An "IP address" is a series of four numbers separated by a period, like "192.168.10.10" (which is
the IP address of my computer on my little home LAN). You should use the IP address of the computer on
which the game session is created. In order to check your computer's IP address, there are at least two
ways. Either do it in Game Maker with the function mplay_ipaddress(), which returns a string containing
the computer's current IP address, or run the command "ipconfig" in a DOS prompt. We will use the
mplay_ipaddress() below in order to check the IP address.

All the connection functions return a value, either true or false. We will check this value to see if the
connection was successfully created or not. In order to make any of the connections above you need to have
the TCP/IP protocol installed on your computer (check the Network Settings in the Control Panel to see if
you have that protocol installed. Otherwise, try to install it). If you want to use the IPX connection, you also
need to have the IPX protocol installed on your computer. Both these protocols are provided on the
standard Windows installation.

5 (21)

Oh, and one more thing. In the beginning of the script, we should check if there is already a connection
running. If so, we should terminate it with the mplay_end() function. The connection is checked with the
mplay_connect_status() function. All of the functions used here are described in the manual in the
section The Game Maker Language / Multiplayer games. I suggest you read through the explanation of
the functions we have discussed so far.

We have now seen a lot of code snippets. Let us put it all together and add some things. Among other
things, we will have "nested" switch statements and all. I hope you will understand the following code with
the comments I have put there. This is the entire contents of the GeneralConnect script.

// Some useful constants.
CH_IPX = 0;
CH_TCPIP = 1;
CH_CREATE = 0;
CH_JOIN = 1;

// Check if a connection already exists. If so, end it.
if (mplay_connect_status() != 0) {
 mplay_end();
}

// Ask player for protocol.
protocolChoice = show_menu("IPX|TCP/IP|Quit", 0);
// Quit if the player chose "Quit".
if (protocolChoice = 2) then exit;

// Ask player for create/join.
sessionChoice = show_menu("Create game|Join game|Quit", 0);
// Quit if the player chose "Quit".
if (sessionChoice = 2) then exit;

// Time for the nested switch statements.

// First, check the procotol chosen.
switch (protocolChoice) {
 case CH_IPX: // IPX
 // Now, check create/join.
 switch (sessionChoice) {
 case CH_CREATE:
 // Make the IPX connection
 ipxResult = mplay_init_ipx();
 // Check if the IPX connection was OK.
 if (ipxResult = true) {
 show_message("IPX Connection was successful.");
 }
 else {
 show_message("IPX Connection failed!");
 game_end();
 }

 // Now it is time to create the session. We will do that soon...

 break;

 case CH_JOIN:
 // Make the IPX connection
 ipxResult = mplay_init_ipx();
 // Check if the IPX connection was OK.
 if (ipxResult = true) {
 show_message("IPX Connection was successful.");
 }
 else {
 show_message("IPX Connection failed!");
 game_end();
 }

 // Now it is time to join a session. We will do that soon.

 break;

6 (21)

 default:
 // This should not happen.
 show_message("Oops...");
 break;

 }

 break; // The end of the IPX case.

 case CH_TCPIP: // TCP/IP
 // Now, check create/join.
 switch (sessionChoice) {
 case CH_CREATE:
 // Display the IP address of this computer:
 show_message("Your IP address is: " + mplay_ipaddress());

 // Make the TCP/IP connection, no IP address...
 tcpipResult = mplay_init_tcpip("");
 // Check if the TCP/IP connection was OK.
 if (tcpipResult = true) {
 show_message("TCP/IP Connection was successful.");
 }
 else {
 show_message("TCP/IP Connection failed!");
 game_end();
 }

 // Now it is time to create a session. We will do that later.

 break;

 case CH_JOIN:
 // When joining a session on a TCP/IP connection,
 // an IP address is required. Ask the player for IP address.
 tcpipAddress = get_string("Enter IP address of master computer: ", "");

 // Make the TCP/IP connection.
 tcpipResult = mplay_init_tcpip(tcpipAddress);
 // Check if the TCP/IP connection was OK.
 if (tcpipResult = true) {
 show_message("TCP/IP Connection was successful.");
 }
 else {
 show_message("TCP/IP Connection failed!");
 game_end();
 }

 // Now it is time to join a session. We will do that later.

 break;

 default:
 // This should not happen.
 show_message("Ooops * Ooops !!");

 break;
 }

 break; // End of the TCP/IP case.

 default:
 // This should not happen.
 show_message("Ooops * Ooops * Ooops !!!");

 break;

}

7 (21)

Now, we need someplace where the script can run. Put it in the Mouse->Left Pressed event of
the objConnection object. We also need a little sprite for the object. You can use this button
image for that. I just made it in POV-Ray (www.povray.org), another free 3D program (albeit one
with a pretty steep learning curve). The button image is called Button1.png. Load it as a sprite
and call it sprButton. Make it Non-transparent. Use this sprite for the objConnection object.
Now we have a button to press.

Add a room and put an instance of the objConnection in the room. You can now test run the game (SAVE
FIRST!!). Click the button and select a connection and either create or join. I hope that you will then
receive the message "Connection was successful.". When asked for an IP address, just enter 0.0.0.0 for
now. That should even work if the other computer is on the same LAN as your own computer.

If the connection fails, check in the Control Panel that the network protocols are installed correctly.

Making a session
Now that we have a connection we need to create a session (or, join a session if we are the "slave").

Creating a session is no big deal, but joining requires a bit more work. In order to create a session we use
the mplay_session_create() function, and in order to join a session, we use the mplay_session_join()
function.

First, since we need some text to be drawn in the next script, please add a font resource and call it fntArial.
I call it that because I used the Arial font. You can use any font you like and any font name you like, just
remember to use that name instead of fntArial below.

Create a new script and call it CreateSession. In this script we will first create a session and then wait for
another player to join it. No meaning in starting the game until the other player has joined, right? :) So,
make the script look like this:

// Create a session.

// First, end any ongoing session.
if (mplay_session_status() > 0) then {
 mplay_session_end();
}

// Then, create a new session.
sessionResult = mplay_session_create("My Session", 0, "Master Player");

// Check if the session was created OK.
if (sessionResult = true) then {
 show_message("A session was successfully created.");
}
else {
 show_message("Failed to create a session.");
 // Return false to the calling script.
 return false;
}

// Wait for other player to join. This is done with a little loop that
// displays a message on the screen.
// Look for other player
nPlayers = mplay_player_find();
// As long as there is only one player (this) the loop will wait.
// It should also be possible to quit the waiting with the "q" key.
while (nPlayers <= 1 and not keyboard_check(ord("Q"))) {
 // Draw some text on the screen and refresh it.
 draw_set_color(c_black);
 draw_set_font(fntArial);
 draw_set_halign(fa_center);
 draw_text(room_width / 2, room_height / 2, "Waiting for other players");
 draw_text(room_width / 2, room_height / 2 + 20, "Press Q to quit");

 // Refresh the screen. This is needed since this is not run
 // in the Draw event.
 screen_refresh();

8 (21)

http://www.povray.org/

 // Finally, check for other player again.
 nPlayers = mplay_player_find();

 // Update the keyboard status.
 io_handle();
}

// Check if there are any more players or if the player pressed "Q".
if (mplay_player_find() > 1) then {
 show_message ("Player '" + mplay_player_name(1) + "' has successfully joined this
session.");
 return true;
}
else {
 return false;
}

First any ongoing session is ended, then the new session is created. The parameters to the
mplay_session_create() function are session name ("My Session"), number of players (0 = arbitrary)
and player name ("Master Player"). A check is made to see that the session was created OK.

Once the session is created, the script waits for an other player to join. This is done in a loop that displays a
message. This loop keeps going until there are more than one player in the game, or until the player
presses "Q" on the keyboard to abort the loop.

I do not remember if we have used the while statement before, but here is a short explanation of it. You
could say that it resembles the if statement. If the expression inside the paremtheses is resolved to true,
all the statements inside the curly braces {} are executed (just like in an if statement). The difference here
is that once all statements have been executed, the expression inside the parentheses is evaluated again. If
it is still true, all the statements are executed again. This goes on all the time until the expression inside the
parentheses becomes false. In our case the expression is true as long as there is only one player in the
session AND the player has not pressed "Q" on the keyboard.

Oh, and another thing that I think is new for you is the return statement. This statement simply ends the
script and returns the value that follows it. So, if everything works out as it should in the script above it
should end at the return true line, second from the end.

This script can then be called like this:

if (CreateSession()) then {
 // It worked!!!
}
else {
 // Sob.... it did not work...
}

Let us make the JoinSession script too now. Write it like this:

// Join a session

// First, end any session that might be running.
if (mplay_session_status() > 0) mplay_session_end();

// Search for sessions.
sessionsFound = mplay_session_find();

// If no sessions were found, exit with "false" value.
if (sessionsFound = 0) then return false;

// Otherwise, present the user with a list of sessions to join.
// This is done with a "menustring" like "session1|session2|session3|..."
strSessionsMenu = "";
for (i = 0; i < sessionsFound; i += 1) {
 strSessionsMenu += "Join session '" + mplay_session_name(i) + "'|";

9 (21)

}
// Add the final "Quit" to the string.
strSessionsMenu += "Quit";

// Show the menu to the player.
joinChoice = show_menu(strSessionsMenu, 0);

// Exit if the player chose "Quit".
if (joinChoice = sessionsFound) then return false;

// Try to join the session and see if it worked.
joinResult = mplay_session_join(joinChoice, "Slave Player");

// Check if it worked to join the session.
if (joinResult = true) then {
 show_message("Joining session '" + mplay_session_name(joinChoice) + "' was
successful.");
 return true;
}
else {
 show_message("Failed to join session '" + mplay_session_name(joinChoice) + "'");
 return false;
}

Let's dissect that script a bit. First any existing session is ended. Then a search is made to look for available
sessions. This search must be made, because there can be lots of ongoing sessions in a LAN. If there are no
sessions found, the script exits returning the false value. But if there are available sessions, the script
compiles a string with session names, separated with the pipe character (|). To this string we add "Quit"
and then present it to the user with the show_menu() function.

If the user chose to join a session (and not to Quit), an attempt is made to join the selected session. If all
goes well, the script returns true. Otherwise it returns false.

We now need to run these new scripts from somewhere. In the script GeneralConnect there are a few
comments that say "Now it is time to create a session...." or "Now it is time to join a session....". Just below
those comments, add the line:

sessionResult = CreateSession();

and

sessionResult = JoinSession();

respectively (I think you can figure out which line goes where. :) :)). Hint: There should be two of each
one.

This is how we call our own scripts from code. Just the script name, followed by two parentheses. The
parentheses are there because it is possible to use parameters when calling a script, and they will then go in
between those (just like other function calls).

In order to test this you now need to run two instances of the game. The easiest way is probably to load up
another instance of Game Maker and load this same game into that instance. Then run the game in both
instances. Move the two windows apart a bit so that you can tell them apart. I also made my rooms much
smaller than the default (300 x 300 pixels). In one instance of the game you choose one of the protocols
and then Create game. It should then display some info about successfully creating connections and
sessions and then a message that says that it is waiting for an other player to connect. This is when you go
to the second game instance. In that, you choose the same protocol and then to Join game.

If everything goes well you should now be able to click the first game instance again to give it the chance to
detect that someone wants to join. Then confirm the messages that appear and click a bit on both game
windows to give them the possibility to react. When everything settles you should have a connection and a
session running!!

10 (21)

I had some problems getting a connection because of my IP network settings (in Windows) was set on
"Server assigned IP address". I did not have a network cable connected at the time of my first tries, and
therefore did not have a "real" IP address. Then the Game Maker connections did not work either (I could
not connect to any session). So, I connected to a network and was given an IP address, and then it worked.

I am afraid I do not know very much about the details in the TCP/IP stack, and therefore I can not really
explain this. I also had problems connecting with IPX.

The next level

We are now ready to go to the next level and make some objects that can move and be controlled via the
connection.

Some good moves
In order to make something happen we need some player objects. It is also a good idea to move to another
room, a "play room" once the network connections are up and running.

So, add a new room. Then add some objects: objPlayerParent, objPlayer1Master, objPlayer1Slave,
objPlayer2Master, objPlayer2Slave. Wow that was a lot of objects. Well, the thought is that each player
have two versions of each object. The Master objects are used when the game is created, and the Slave
objects are used when the game is joined. There is also one parent object that contains some of the
actions that are common for all the player objects (like sprite assignment and such). That is right. Make the
objPlayerParent the parent of all the other player objects.

We will attempt to make an eight-directional movement sprite here. I have made a little
animated worm in Blender. I hope you find it cuter than the spaceships and planes we have used
in previous lectures. :) (This is specifically aimed at you, Kathi ;-)) The thought is that there is
one animated sprite for each of the eight directions. Add the sprites and call then e.g.
sprWormSW, sprWormS, sprWormSE,... etc. The last letters are for South-West, South,
South-East, etc, for the direction in which the worm is moving. Then assign one of the sprites to the
objPlayerParent.

In the Create event of the objPlayerParent, do this:

// Set some constants
normalSpeed = 2;

// Set the initial facing_direction (made-up variable)
facing_direction = 0;

11 (21)

In the STEP event of the objPlayerParent, put this code in order to assign the correct sprite:

// Assign the correct sprite to the instance.
switch (facing_direction) {
 case 0: sprite_index = sprWormE; break;
 case 45: sprite_index = sprWormNE; break;
 case 90: sprite_index = sprWormN; break;
 case 135: sprite_index = sprWormNW; break;
 case 180: sprite_index = sprWormW; break;
 case 225: sprite_index = sprWormSW; break;
 case 270: sprite_index = sprWormS; break;
 case 315: sprite_index = sprWormSE; break;
 default: sprite_index = sprWormE; break;
}
if (speed = 0) then {
 // Stop the sprite animation.
 image_speed = 0;
}
else {
 // Start the sprite animation again.
 image_speed = 1;
 // Only copy the direction to facing_direction if
 // we are moving.
 facing_direction = direction;
}

Then open up the objPlayer1Master. Here we will add the following events and code (Be careful to choose
"Key Press" and not just "Keyboard" events):

Event Action code

Key Press <Left>
hspeed = -normalSpeed;

Key Press <Right>
hspeed = normalSpeed;

Key Press <Up>
vspeed = -normalSpeed;

Key Press <Down>
vspeed = normalSpeed;

Now the worm ought to move as it should. It will however not stop when we release the keys. So, put the
following code in the Step event of the objPlayer1Master.

kLeft = keyboard_check(vk_left);
kRight = keyboard_check(vk_right);
kUp = keyboard_check(vk_up);
kDown = keyboard_check(vk_down);
if (not (kLeft or kRight)) then hspeed = 0;
if (not (kUp or kDown)) then vspeed = 0;

The first four lines will just assign the state of the four cursor keys to some shorter variables, just to make it
easier to write the rest of the code. Then a check is made to see if neither the left nor the right keyboard
keys are pressed. If they are not, the horizontal speed is set to 0. Similar actions are taken for the vertical
keys and speed.

The problem with this is that now that we have defined a Step event for this object, it will override the
Step event of the parent object. Hmmm. There is a very simple fix for that though. To the beginning of the
Step event, add the Call the inherited event action (from the control tab). This will first execute the
actions of the parent's event, before looking at the actions specified here. Good.

12 (21)

If you want to test out the worm, add an instance of the objPlayer1Master to the first room and try it out.
I hope it wriggles somewhat satisfactory.

Beep...beep...data transfer...**B010000012f4ced...

(Sorry..got a little carried away again.. I tend to write these lectures after 22:00 every time and the more I grow tired, the more bad jokes and stuff I put here.
Oh...just happened to find my "OneLiners.txt" file. Contains lots and lots of wise words. How about these:
1 + 2 = 3 Therefore 4 + 5 = 6
2+2=5, for sufficiently large values of 2
A friend likes you even though he doesn't need you anymore
A gun gives you the body, not the bird
Apathy Error: Don't bother striking any key
Ben Kenobi at the dinner table: Use the FORKS, Luke!
DEFINITION: Disassembler - An unattended five year old child
SET PATH = LOOK AROUND ON HD; DESK DRAWER; UNDER DESK; HALL CLOSET;
Ah, well, I guess I'd better stop there...)

Alright! Let's get back to work. We can now move our worm, and we now need to transfer the movement to
the other player's computer in some way. The best way to do that (in my opinion) is do make use of the
"shared data variables". As said earlier there are 10001 of them. So, the first thing we have to do is to
decide which ones to use.

We need to transfer the coordinates (2 values), the direction and the speed of the player object to the other
computer. Say, how about using number 0, 1, 2 and 3? :)

Add this code to the End Step event of the objPlayer1Master object:

// Write the coordinates to the shared data variables
mplay_data_write(0, x);
mplay_data_write(1, y);
// Write the direction to the shared data variables
mplay_data_write(2, direction);
// Write the speed to the shared data varaibles
mplay_data_write(3, speed);

That was not so hard, was it? :) Better keep a little table of what the shared variables contain.

Index Data

0 Player 1 x coordinate

1 Player 1 y coordinate

2 Player 1 direction

3 Player 1 speed

Now, the player one object on the slave computer (objPlayer1Slave) should read these values and use
then for moving. Add a Step event to the objPlayer1Slave object. To that event, first add the Call the
inherited event action. Then add this code:

// Read movement values from shared data.
x = mplay_data_read(0);
y = mplay_data_read(1);
direction = mplay_data_read(2);
speed = mplay_data_read(3);

There! Now the slave version should act just like the master version.

13 (21)

Putting it together
Create two new rooms and call then MasterRoom and SlaveRoom. I think this is the best approach since
the master and the slave should have different objects existing in their respective room. In the
MasterRoom, add an instance of the object objPlayer1Master and one instance of objPlayer2Master. In
the SlaveRoom, add an instance of the object objPlayer1Slave and one instance of objPlayer2Slave.

We now need to make sure that the player is moved to the correct room after the connection and session
hasve been created. That can be done if you add these lines to the end of the GeneralConnect script:

if (sessionResult = false) then exit;

if (mplay_session_status() = 1) then {
 room_goto(MasterRoom);
}
else if (mplay_session_status() = 2) then {
 room_goto(SlaveRoom);
}

This piece of code will just exit of the sessions were not completely created/joined. Otherwise (if all is OK) it
will go to either the MasterRoom or the SlaveRoom depending on the result from the
mplay_session_status() function. That function returns 0 if no session is active, 1 if a session has been
successfully created and 2 if a session has been successfully joined.

If you now try out the game, player 1 movement should work. If not, something has been left out...

We should now try to make player 2 work too. Actually, there is so much that is the same as player 1, so,
change the parent of objPlayer2Slave to objPlayer1Master. We will just change a little bit of it. The only
thing that needs changing is the End Step event where the shared data is written. Add the End Step event
to the objPlayer2Slave and enter the following code:

// Write the coordinates to the shared data
variables
mplay_data_write(4, x);
mplay_data_write(5, y);
// Write the direction to the shared data variables
mplay_data_write(6, direction);
// Write the speed to the shared data variables
mplay_data_write(7, speed);

14 (21)

And we update our shared data table, just for our own reference:

Index Data

0 Player 1 x coordinate

1 Player 1 y coordinate

2 Player 1 direction

3 Player 1 speed

4 Player 2 x coordinate

5 Player 2 y coordinate

6 Player 2 direction

7 Player 2 speed

Finally, make the Master version of player 2 act like the Slave version. This is done by adding the event
Step to the objPlayer2Master and first add the action Call the inherited event to it, and then this code:

x = mplay_data_read(4);
y = mplay_data_read(5);
direction = mplay_data_read(6);
speed = mplay_data_read(7);

The goal of the game

Fantastic! Now we can control two worms and make them appear on two different computers. Try it if you
do not believe it. But there is still no real meaning to the game, and we still have not made use of the
message sending function.

An apple a day keeps the doctor away
Let us make the worms go after an apple. This is common in worm games, right? Well, here is
an apple anyway (also made in Blender). We will make it so that an apple appears in a random
place after a short, random time. The first worm that makes it to the apple gets some points,
then the apple appears again, in a new place, and so on. Create an apple sprite, sprApple
using this image, and an apple object, objApple. Assign the sprite to the new object. We will
also use the "boitt" sound, boitt.wav, when the apple is destroyed (taken by a worm). Add
this sound too and make it play once in the Destroy event of the apple object. Great!

What we now need is some kind of controller that handles the distribution of apples (apple-monger? :)).
Create the object objAppleMaster and the object objAppleSlave. Make them invisible and add the
objAppleMaster to the MasterRoom and the objAppleSlave to the SlaveRoom. We will make it so that
the objAppleMaster sends a message to the objAppleSlave when an apple should be created. Once a
worm hits an apple we will make that worm send a message about this. The apple control objects will be
used as message listeners.

15 (21)

In the Create event of the objAppleMaster object, create an instance of the objApple object at a random
location. This could be done like this:

myApple = instance_create(round(random(room_width - 80)), round(random(room_height -
80)), objApple);

An apple instance will be created at a random location inside the room. The subtraction of 80 is there
because of the width and height of the apple sprite. The we need to tell the slave where we have created
the apple so that they both create the apples at the same location. That can be done by adding this after the
line above:

coordinateString = string(myApple.x) + "," + string(myApple.y);
mplay_message_send_guaranteed(0, 0, coordinateString);

First a string is created. This string consists of the x and y coordinate of the apple that was just created. I
have chosen to do it like this because it is only possible to send a single value in a message like this. That
also means that we have to convert it back into two values after receiving it at the other end. We will look at
that in a minute. Before that, take a look at the parameters of the message sending function. The first
parameter is the receiver of the message. If we set 0 there (as above) the message is sent to all players.
The second parameter is a message ID. It is used to determine what kind of message this is, and it is up to
the designer to decide what each message ID means, just like with the shared data indexes.

To be good designers, let's put up a small table over the message IDs and their contents:

Message
ID

Description Contents

0 Create a new apple at the slave side "<Apple x coordinate>,<Apple y coordinate>"

You might also have noted the word "guaranteed" in the function call. That is because there are two ways of
sending messages: fast and insecure or slower and secure. The secure/insecure is just a matter of reaching
the destination or not. When working with networks, there is a small chance of data getting lost along the
way. Therefore there is some sort of built-in mechanism that makes sure that a message reaches the
destination if it is sent "guaranteed". I do not know exactly how it works (I guess it relies some kind of
acknowledge signals) but we need not know that in order to use it. Just remember that there are two
"modes" when sending messages. Sending guaranteed messages takes a little longer because of the safety
mechanisms.

Open up the objAppleSlave now and have a look at how we receive messages. Receiving messages is a
matter of "polling the message queue".

(Side note: Generally you can say that there exist two mechanisms for receiving signals: ether through
polling or through interrupts. Polling is slower but easier to implement (I think) and interrupts are faster.
You can think of the difference as the difference between receiving a phone call and an email (assuming you
do not have an email notificaion sound on your computer). When you receive an email you will have to
"Poll" your email box to see if there is an email. If you are expecting an important email you might have to
poll very often in order not to delay the answer too much. When the phone rings on the other hand, you are
interrupted in what you do and you can immediately take the call. (Well, at least I do not poll my phone to
see if there is anyone there at the other end every now and then. :)). But in Game Maker it is polling that is
the method in use.)

16 (21)

Add the Step event to the objAppleSlave object. Then, add this code to that event:

// Poll the message queue to see if there are any messages.
while (mplay_message_receive(0)) {
 // Do different actions depending on the message ID.
 switch (mplay_message_id()) {
 // 0 - Create an apple
 case 0:
 // Get the position of the comma sign in the string
 commaPos = string_pos(",", mplay_message_value());
 // Get the x and y coordinates and convert to real values.
 xCoord = real(string_copy(mplay_message_value(), 1, commaPos - 1));
 yCoord = real(string_copy(mplay_message_value(), commaPos + 1,
string_length(mplay_message_value()) - commaPos));
 // Create a new apple at the given coordinates.
 myApple = instance_create(xCoord, yCoord, objApple);
 break;
 }
}

Phew! That was not the easiest... but now we should have a slave version of the apple object too. The string
splitting might look a bit hairy if you are not used to working with strings. Unfortunately I do not have the
time and energy to explain the string functions in further detail here.
If you are interested in a general string splitting script though, there is a pretty good working version among
the examples on my web page, http://hem.passagen.se/birchdale/carl .
There need to be collision events defined too. In the objPlayer1Master, add the collision event with the
apple object. When colliding with the apple, the apple should be destroyed and a message should be sent to
the slave to remove the apple there too. Add this code to the collision event:

// Destroy the apple
with (other) instance_destroy();
// Send a destroy order to the slave
mplay_message_send_guaranteed(0, 1, 0);
// Set a timer for new apple
objAppleMaster.alarm[0] = random(90);

Here we first destroy the apple, and then send a message with ID 1 to the slave. Note that the value of the
message (the third parameter) does not matter in this message, because the slave only needs to know the
ID so that it can destroy the apple.
In order to destroy the apple at the slave when receiving the above message, modify the message polling
code above so that it looks like this (additions written in bold text):

// Poll the message queue to see if there are any messages.
while (mplay_message_receive(0)) {
 // Do different actions depending on the message ID.
 switch (mplay_message_id()) {
 // 0 - Create an apple
 case 0:
 // Get the position of the comma sign in the string
 commaPos = string_pos(",", mplay_message_value());
 // Get the x and y coordinates and convert to real values.
 xCoord = real(string_copy(mplay_message_value(), 1, commaPos - 1));
 yCoord = real(string_copy(mplay_message_value(), commaPos + 1,
string_length(mplay_message_value()) - commaPos));
 // Create a new apple at the given coordinates.
 myApple = instance_create(xCoord, yCoord, objApple);
 break;
 // 1 - Destroy the apple
 case 1:
 if (instance_exists(myApple)) then {
 with (myApple) instance_destroy();
 }
 break;
 }
}

17 (21)

http://hem.passagen.se/birchdale/carl

Then, do a similar thing with the slave worm. In the objPlayer2Slave, add the collision event with the
apple object and enter:

// Destroy the apple
with (other) instance_destroy();
// Send a destroy order to the master
mplay_message_send_guaranteed(0, 2, 0);

Now there is a message sent from the slave to the master. So, we will have to poll for messages in the
objAppleMaster too (funny... AppleMaster sounds like a TV-shop apple-peeling machine or something...
:)). Add the Step event and write down this code:

while (mplay_message_receive(0)) {
 switch (mplay_message_id()) {
 // 2 - Destroy the apple
 case 2:
 if (instance_exists(myApple)) then {
 with (myApple) instance_destroy();
 }
 // Set the timer for the creation of a new apple.
 alarm[0] = random(90);
 break;
 }
}

Oh, and perhaps we should update the message ID table too?

Message
ID

Description Contents

0 Create a new apple at the slave side "<Apple x coordinate>,<Apple y coordinate>"

1 Delete the slave apple N/A

2 Delete the master apple N/A

18 (21)

Now, I think, the only thing that remains is the alarm0 event of the objAppleMaster object. Here we
should create a new apple, just like in the Create event:

myApple = instance_create(round(random(room_width - 80)), round(random(room_height -
80)), objApple);
coordinateString = string(myApple.x) + "," + string(myApple.y);
mplay_message_send_guaranteed(0, 0, coordinateString);

Heeeee scores!
What are we missing now? Let me see. Some scores perhaps? First, make sure that no score is
automatically written in the caption string. This can be done in the objConnection object (You should know
how by yourself, hehe.. :)).

Then we decide on two new shared variables that can carry the scores of the players. Here is the new
updated shared data table with the new scores at the end of the table:

Index Data

0 Player 1 x coordinate

1 Player 1 y coordinate

2 Player 1 direction

3 Player 1 speed

4 Player 2 x coordinate

5 Player 2 y coordinate

6 Player 2 direction

7 Player 2 speed

8 Player 1 score

9 Player 2 score

We use the objAppleMaster object to reset those values in the beginning of the game. In the Create
event, add this code:

// Reset the scores
mplay_data_write(8, 0);
mplay_data_write(9, 0);

19 (21)

Then we update the scores in the objPlayer1Master collision event with the apple. Add this there:

// Increase player 1 score
mplay_data_write(8, mplay_data_read(8) + 1);

And, in the same collision event in objplayer2Slave:

// Increase player 2 score
mplay_data_write(9, mplay_data_read(9) + 1);

We also have to display the score. I have chosen to display it in the caption bar. Add this to the end of the
Step event of the objAppleMaster object:

// Update the window caption with the scores
player1Score = string(mplay_data_read(8));
player2Score = string(mplay_data_read(9));
room_caption = "Player 1: " + player1Score + " Player 2: " + player2Score;

And, add the exact same code to the end of the Step event of the objAppleSlave object.

Now try the game. Preferrably on two computers playing against each other.

I really hope it works now. It took a very long time writing this and I had to do a lot of testing. I am very
sorry if I missed something out. It is likely that I have done that. If you find anything to be wrong herein,
please do not hesitate to tell me so.

20 (21)

 Assignments

Assignment 8 - Add "chatting" feature to the worms game
Due date: Saturday, 8 October 2005, 08:00 AM (29 days 19 hours early)
Maximum grade: 100
In this assignment you will add a little "chatting" feature to the worms
game.
It should work like this:

- Pressing ENTER should bring up a string request popup (use the function
get_string()).
- The player can then enter a string in the popup box and click OK.
- The string is then sent to the other player.
- When a player receives a string like this, it is displayed in a popup
window (use the function show_message())

If you feel like making a more advanced interface for this, like for example
having the messages being displayed as text in the game window and not in a
popup window, you are of course free and encouraged to do so. But the
main thing here is to get the message over to the other player and display
it in some way.

Good luck!

Regards
Carl

Read the GM Manual
Due date: Saturday, 8 October 2005, 08:00 AM (29 days 19 hours early)
Maximum grade: 0

Read the following sections from the GM 6.1 help file section "The Game
Maker Language (GML)":

- FILES, REGISTRY AND EXECUTING PROGRAMS
- MULTIPLAYER GAMES

These sections cover file and registry handling and multiplayer stuff.

21 (21)

